This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsopr | |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr | |- -. x C. x |
|
| 2 | ltprord | |- ( ( x e. P. /\ x e. P. ) -> ( x |
|
| 3 | 1 2 | mtbiri | |- ( ( x e. P. /\ x e. P. ) -> -. x |
| 4 | 3 | anidms | |- ( x e. P. -> -. x |
| 5 | psstr | |- ( ( x C. y /\ y C. z ) -> x C. z ) |
|
| 6 | ltprord | |- ( ( x e. P. /\ y e. P. ) -> ( x |
|
| 7 | 6 | 3adant3 | |- ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( x |
| 8 | ltprord | |- ( ( y e. P. /\ z e. P. ) -> ( y |
|
| 9 | 8 | 3adant1 | |- ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( y |
| 10 | 7 9 | anbi12d | |- ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( ( x |
| 11 | ltprord | |- ( ( x e. P. /\ z e. P. ) -> ( x |
|
| 12 | 11 | 3adant2 | |- ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( x |
| 13 | 10 12 | imbi12d | |- ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( ( ( x |
| 14 | 5 13 | mpbiri | |- ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( ( x |
| 15 | psslinpr | |- ( ( x e. P. /\ y e. P. ) -> ( x C. y \/ x = y \/ y C. x ) ) |
|
| 16 | biidd | |- ( ( x e. P. /\ y e. P. ) -> ( x = y <-> x = y ) ) |
|
| 17 | ltprord | |- ( ( y e. P. /\ x e. P. ) -> ( y |
|
| 18 | 17 | ancoms | |- ( ( x e. P. /\ y e. P. ) -> ( y |
| 19 | 6 16 18 | 3orbi123d | |- ( ( x e. P. /\ y e. P. ) -> ( ( x |
| 20 | 15 19 | mpbird | |- ( ( x e. P. /\ y e. P. ) -> ( x |
| 21 | 4 14 20 | issoi | |- |