This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0lt1sr | |- 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr | |- 1P e. P. |
|
| 2 | addclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
|
| 3 | 1 1 2 | mp2an | |- ( 1P +P. 1P ) e. P. |
| 4 | ltaddpr | |- ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) |
|
| 5 | 3 1 4 | mp2an | |- ( 1P +P. 1P ) |
| 6 | addcompr | |- ( 1P +P. ( 1P +P. 1P ) ) = ( ( 1P +P. 1P ) +P. 1P ) |
|
| 7 | 5 6 | breqtrri | |- ( 1P +P. 1P ) |
| 8 | ltsrpr | |- ( [ <. 1P , 1P >. ] ~R |
|
| 9 | 7 8 | mpbir | |- [ <. 1P , 1P >. ] ~R |
| 10 | df-0r | |- 0R = [ <. 1P , 1P >. ] ~R |
|
| 11 | df-1r | |- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
|
| 12 | 9 10 11 | 3brtr4i | |- 0R |