This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndmovordi.2 | |- dom F = ( S X. S ) |
|
| ndmovordi.4 | |- R C_ ( S X. S ) |
||
| ndmovordi.5 | |- -. (/) e. S |
||
| ndmovordi.6 | |- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
||
| Assertion | ndmovordi | |- ( ( C F A ) R ( C F B ) -> A R B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmovordi.2 | |- dom F = ( S X. S ) |
|
| 2 | ndmovordi.4 | |- R C_ ( S X. S ) |
|
| 3 | ndmovordi.5 | |- -. (/) e. S |
|
| 4 | ndmovordi.6 | |- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
|
| 5 | 2 | brel | |- ( ( C F A ) R ( C F B ) -> ( ( C F A ) e. S /\ ( C F B ) e. S ) ) |
| 6 | 5 | simpld | |- ( ( C F A ) R ( C F B ) -> ( C F A ) e. S ) |
| 7 | 1 3 | ndmovrcl | |- ( ( C F A ) e. S -> ( C e. S /\ A e. S ) ) |
| 8 | 7 | simpld | |- ( ( C F A ) e. S -> C e. S ) |
| 9 | 6 8 | syl | |- ( ( C F A ) R ( C F B ) -> C e. S ) |
| 10 | 4 | biimprd | |- ( C e. S -> ( ( C F A ) R ( C F B ) -> A R B ) ) |
| 11 | 9 10 | mpcom | |- ( ( C F A ) R ( C F B ) -> A R B ) |