This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3ecoptocl.1 | |- S = ( ( D X. D ) /. R ) |
|
| 3ecoptocl.2 | |- ( [ <. x , y >. ] R = A -> ( ph <-> ps ) ) |
||
| 3ecoptocl.3 | |- ( [ <. z , w >. ] R = B -> ( ps <-> ch ) ) |
||
| 3ecoptocl.4 | |- ( [ <. v , u >. ] R = C -> ( ch <-> th ) ) |
||
| 3ecoptocl.5 | |- ( ( ( x e. D /\ y e. D ) /\ ( z e. D /\ w e. D ) /\ ( v e. D /\ u e. D ) ) -> ph ) |
||
| Assertion | 3ecoptocl | |- ( ( A e. S /\ B e. S /\ C e. S ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ecoptocl.1 | |- S = ( ( D X. D ) /. R ) |
|
| 2 | 3ecoptocl.2 | |- ( [ <. x , y >. ] R = A -> ( ph <-> ps ) ) |
|
| 3 | 3ecoptocl.3 | |- ( [ <. z , w >. ] R = B -> ( ps <-> ch ) ) |
|
| 4 | 3ecoptocl.4 | |- ( [ <. v , u >. ] R = C -> ( ch <-> th ) ) |
|
| 5 | 3ecoptocl.5 | |- ( ( ( x e. D /\ y e. D ) /\ ( z e. D /\ w e. D ) /\ ( v e. D /\ u e. D ) ) -> ph ) |
|
| 6 | 3 | imbi2d | |- ( [ <. z , w >. ] R = B -> ( ( A e. S -> ps ) <-> ( A e. S -> ch ) ) ) |
| 7 | 4 | imbi2d | |- ( [ <. v , u >. ] R = C -> ( ( A e. S -> ch ) <-> ( A e. S -> th ) ) ) |
| 8 | 2 | imbi2d | |- ( [ <. x , y >. ] R = A -> ( ( ( ( z e. D /\ w e. D ) /\ ( v e. D /\ u e. D ) ) -> ph ) <-> ( ( ( z e. D /\ w e. D ) /\ ( v e. D /\ u e. D ) ) -> ps ) ) ) |
| 9 | 5 | 3expib | |- ( ( x e. D /\ y e. D ) -> ( ( ( z e. D /\ w e. D ) /\ ( v e. D /\ u e. D ) ) -> ph ) ) |
| 10 | 1 8 9 | ecoptocl | |- ( A e. S -> ( ( ( z e. D /\ w e. D ) /\ ( v e. D /\ u e. D ) ) -> ps ) ) |
| 11 | 10 | com12 | |- ( ( ( z e. D /\ w e. D ) /\ ( v e. D /\ u e. D ) ) -> ( A e. S -> ps ) ) |
| 12 | 1 6 7 11 | 2ecoptocl | |- ( ( B e. S /\ C e. S ) -> ( A e. S -> th ) ) |
| 13 | 12 | com12 | |- ( A e. S -> ( ( B e. S /\ C e. S ) -> th ) ) |
| 14 | 13 | 3impib | |- ( ( A e. S /\ B e. S /\ C e. S ) -> th ) |