This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isso2i.1 | |- ( ( x e. A /\ y e. A ) -> ( x R y <-> -. ( x = y \/ y R x ) ) ) |
|
| isso2i.2 | |- ( ( x e. A /\ y e. A /\ z e. A ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
||
| Assertion | isso2i | |- R Or A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isso2i.1 | |- ( ( x e. A /\ y e. A ) -> ( x R y <-> -. ( x = y \/ y R x ) ) ) |
|
| 2 | isso2i.2 | |- ( ( x e. A /\ y e. A /\ z e. A ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
|
| 3 | equid | |- x = x |
|
| 4 | 3 | orci | |- ( x = x \/ x R x ) |
| 5 | nfv | |- F/ y ( ( x e. A /\ x e. A ) -> ( ( x = x \/ x R x ) <-> -. x R x ) ) |
|
| 6 | eleq1w | |- ( y = x -> ( y e. A <-> x e. A ) ) |
|
| 7 | 6 | anbi2d | |- ( y = x -> ( ( x e. A /\ y e. A ) <-> ( x e. A /\ x e. A ) ) ) |
| 8 | equequ2 | |- ( y = x -> ( x = y <-> x = x ) ) |
|
| 9 | breq1 | |- ( y = x -> ( y R x <-> x R x ) ) |
|
| 10 | 8 9 | orbi12d | |- ( y = x -> ( ( x = y \/ y R x ) <-> ( x = x \/ x R x ) ) ) |
| 11 | breq2 | |- ( y = x -> ( x R y <-> x R x ) ) |
|
| 12 | 11 | notbid | |- ( y = x -> ( -. x R y <-> -. x R x ) ) |
| 13 | 10 12 | bibi12d | |- ( y = x -> ( ( ( x = y \/ y R x ) <-> -. x R y ) <-> ( ( x = x \/ x R x ) <-> -. x R x ) ) ) |
| 14 | 7 13 | imbi12d | |- ( y = x -> ( ( ( x e. A /\ y e. A ) -> ( ( x = y \/ y R x ) <-> -. x R y ) ) <-> ( ( x e. A /\ x e. A ) -> ( ( x = x \/ x R x ) <-> -. x R x ) ) ) ) |
| 15 | 1 | con2bid | |- ( ( x e. A /\ y e. A ) -> ( ( x = y \/ y R x ) <-> -. x R y ) ) |
| 16 | 5 14 15 | chvarfv | |- ( ( x e. A /\ x e. A ) -> ( ( x = x \/ x R x ) <-> -. x R x ) ) |
| 17 | 4 16 | mpbii | |- ( ( x e. A /\ x e. A ) -> -. x R x ) |
| 18 | 17 | anidms | |- ( x e. A -> -. x R x ) |
| 19 | 15 | biimprd | |- ( ( x e. A /\ y e. A ) -> ( -. x R y -> ( x = y \/ y R x ) ) ) |
| 20 | 19 | orrd | |- ( ( x e. A /\ y e. A ) -> ( x R y \/ ( x = y \/ y R x ) ) ) |
| 21 | 3orass | |- ( ( x R y \/ x = y \/ y R x ) <-> ( x R y \/ ( x = y \/ y R x ) ) ) |
|
| 22 | 20 21 | sylibr | |- ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) ) |
| 23 | 18 2 22 | issoi | |- R Or A |