This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltprord | |- ( ( A e. P. /\ B e. P. ) -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( x = A -> ( x e. P. <-> A e. P. ) ) |
|
| 2 | 1 | anbi1d | |- ( x = A -> ( ( x e. P. /\ y e. P. ) <-> ( A e. P. /\ y e. P. ) ) ) |
| 3 | psseq1 | |- ( x = A -> ( x C. y <-> A C. y ) ) |
|
| 4 | 2 3 | anbi12d | |- ( x = A -> ( ( ( x e. P. /\ y e. P. ) /\ x C. y ) <-> ( ( A e. P. /\ y e. P. ) /\ A C. y ) ) ) |
| 5 | eleq1 | |- ( y = B -> ( y e. P. <-> B e. P. ) ) |
|
| 6 | 5 | anbi2d | |- ( y = B -> ( ( A e. P. /\ y e. P. ) <-> ( A e. P. /\ B e. P. ) ) ) |
| 7 | psseq2 | |- ( y = B -> ( A C. y <-> A C. B ) ) |
|
| 8 | 6 7 | anbi12d | |- ( y = B -> ( ( ( A e. P. /\ y e. P. ) /\ A C. y ) <-> ( ( A e. P. /\ B e. P. ) /\ A C. B ) ) ) |
| 9 | df-ltp | |- |
|
| 10 | 4 8 9 | brabg | |- ( ( A e. P. /\ B e. P. ) -> ( A |
| 11 | 10 | bianabs | |- ( ( A e. P. /\ B e. P. ) -> ( A |