This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of Gleason p. 119. (Contributed by NM, 24-Apr-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexnq | |- ( B e. Q. -> ( AE. x ( A +Q x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq | |- |
|
| 2 | 1 | brel | |- ( A( A e. Q. /\ B e. Q. ) ) |
| 3 | ordpinq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A( ( 1st ` A ) .N ( 2nd ` B ) ) |
|
| 4 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 5 | 4 | adantr | |- ( ( A e. Q. /\ B e. Q. ) -> A e. ( N. X. N. ) ) |
| 6 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 7 | 5 6 | syl | |- ( ( A e. Q. /\ B e. Q. ) -> ( 1st ` A ) e. N. ) |
| 8 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 9 | 8 | adantl | |- ( ( A e. Q. /\ B e. Q. ) -> B e. ( N. X. N. ) ) |
| 10 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 11 | 9 10 | syl | |- ( ( A e. Q. /\ B e. Q. ) -> ( 2nd ` B ) e. N. ) |
| 12 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 13 | 7 11 12 | syl2anc | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 14 | xp1st | |- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
|
| 15 | 9 14 | syl | |- ( ( A e. Q. /\ B e. Q. ) -> ( 1st ` B ) e. N. ) |
| 16 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 17 | 5 16 | syl | |- ( ( A e. Q. /\ B e. Q. ) -> ( 2nd ` A ) e. N. ) |
| 18 | mulclpi | |- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) |
| 20 | ltexpi | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. /\ ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
|
| 21 | 13 19 20 | syl2anc | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 22 | relxp | |- Rel ( N. X. N. ) |
|
| 23 | 4 | ad2antrr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> A e. ( N. X. N. ) ) |
| 24 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 25 | 22 23 24 | sylancr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 26 | 25 | oveq1d | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) |
| 27 | 7 | adantr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( 1st ` A ) e. N. ) |
| 28 | 17 | adantr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( 2nd ` A ) e. N. ) |
| 29 | simpr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> y e. N. ) |
|
| 30 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 31 | 17 11 30 | syl2anc | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 32 | 31 | adantr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 33 | addpipq | |- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( y e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) >. ) |
|
| 34 | 27 28 29 32 33 | syl22anc | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) >. ) |
| 35 | 26 34 | eqtrd | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) >. ) |
| 36 | oveq2 | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> ( ( 2nd ` A ) .N ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) ) = ( ( 2nd ` A ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
|
| 37 | distrpi | |- ( ( 2nd ` A ) .N ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) ) = ( ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( 2nd ` A ) .N y ) ) |
|
| 38 | fvex | |- ( 2nd ` A ) e. _V |
|
| 39 | fvex | |- ( 1st ` A ) e. _V |
|
| 40 | fvex | |- ( 2nd ` B ) e. _V |
|
| 41 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 42 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 43 | 38 39 40 41 42 | caov12 | |- ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) |
| 44 | mulcompi | |- ( ( 2nd ` A ) .N y ) = ( y .N ( 2nd ` A ) ) |
|
| 45 | 43 44 | oveq12i | |- ( ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( 2nd ` A ) .N y ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) |
| 46 | 37 45 | eqtr2i | |- ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) = ( ( 2nd ` A ) .N ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) ) |
| 47 | mulasspi | |- ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 1st ` B ) ) ) |
|
| 48 | mulcompi | |- ( ( 2nd ` A ) .N ( 1st ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) |
|
| 49 | 48 | oveq2i | |- ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 1st ` B ) ) ) = ( ( 2nd ` A ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) |
| 50 | 47 49 | eqtri | |- ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) = ( ( 2nd ` A ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) |
| 51 | 36 46 50 | 3eqtr4g | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) ) |
| 52 | mulasspi | |- ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) |
|
| 53 | 52 | eqcomi | |- ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) |
| 54 | 53 | a1i | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) ) |
| 55 | 51 54 | opeq12d | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> <. ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) >. = <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) |
| 56 | 55 | eqeq2d | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> ( ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) +N ( y .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) >. <-> ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) ) |
| 57 | 35 56 | syl5ibcom | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) ) |
| 58 | fveq2 | |- ( ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. -> ( /Q ` ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = ( /Q ` <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) ) |
|
| 59 | adderpq | |- ( ( /Q ` A ) +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = ( /Q ` ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) |
|
| 60 | nqerid | |- ( A e. Q. -> ( /Q ` A ) = A ) |
|
| 61 | 60 | ad2antrr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( /Q ` A ) = A ) |
| 62 | 61 | oveq1d | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( /Q ` A ) +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) ) |
| 63 | 59 62 | eqtr3id | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( /Q ` ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) ) |
| 64 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` A ) ) e. N. ) |
|
| 65 | 17 17 64 | syl2anc | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( 2nd ` A ) .N ( 2nd ` A ) ) e. N. ) |
| 66 | 65 | adantr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` A ) ) e. N. ) |
| 67 | 15 | adantr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( 1st ` B ) e. N. ) |
| 68 | 11 | adantr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( 2nd ` B ) e. N. ) |
| 69 | mulcanenq | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) e. N. /\ ( 1st ` B ) e. N. /\ ( 2nd ` B ) e. N. ) -> <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
|
| 70 | 66 67 68 69 | syl3anc | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
| 71 | 8 | ad2antlr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> B e. ( N. X. N. ) ) |
| 72 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
|
| 73 | 22 71 72 | sylancr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
| 74 | 70 73 | breqtrrd | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ~Q B ) |
| 75 | mulclpi | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) e. N. /\ ( 1st ` B ) e. N. ) -> ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) e. N. ) |
|
| 76 | 66 67 75 | syl2anc | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) e. N. ) |
| 77 | mulclpi | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) e. N. ) |
|
| 78 | 66 68 77 | syl2anc | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) e. N. ) |
| 79 | 76 78 | opelxpd | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. e. ( N. X. N. ) ) |
| 80 | nqereq | |- ( ( <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ~Q B <-> ( /Q ` <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) = ( /Q ` B ) ) ) |
|
| 81 | 79 71 80 | syl2anc | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ~Q B <-> ( /Q ` <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) = ( /Q ` B ) ) ) |
| 82 | 74 81 | mpbid | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( /Q ` <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) = ( /Q ` B ) ) |
| 83 | nqerid | |- ( B e. Q. -> ( /Q ` B ) = B ) |
|
| 84 | 83 | ad2antlr | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( /Q ` B ) = B ) |
| 85 | 82 84 | eqtrd | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( /Q ` <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) = B ) |
| 86 | 63 85 | eqeq12d | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( /Q ` ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = ( /Q ` <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. ) <-> ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = B ) ) |
| 87 | 58 86 | imbitrid | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( A +pQ <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) = <. ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 1st ` B ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` A ) ) .N ( 2nd ` B ) ) >. -> ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = B ) ) |
| 88 | 57 87 | syld | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = B ) ) |
| 89 | fvex | |- ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) e. _V |
|
| 90 | oveq2 | |- ( x = ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) -> ( A +Q x ) = ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) ) |
|
| 91 | 90 | eqeq1d | |- ( x = ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) -> ( ( A +Q x ) = B <-> ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = B ) ) |
| 92 | 89 91 | spcev | |- ( ( A +Q ( /Q ` <. y , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) ) = B -> E. x ( A +Q x ) = B ) |
| 93 | 88 92 | syl6 | |- ( ( ( A e. Q. /\ B e. Q. ) /\ y e. N. ) -> ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> E. x ( A +Q x ) = B ) ) |
| 94 | 93 | rexlimdva | |- ( ( A e. Q. /\ B e. Q. ) -> ( E. y e. N. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N y ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) -> E. x ( A +Q x ) = B ) ) |
| 95 | 21 94 | sylbid | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 96 | 3 95 | sylbid | |- ( ( A e. Q. /\ B e. Q. ) -> ( AE. x ( A +Q x ) = B ) ) |
| 97 | 2 96 | mpcom | |- ( AE. x ( A +Q x ) = B ) |
| 98 | eleq1 | |- ( ( A +Q x ) = B -> ( ( A +Q x ) e. Q. <-> B e. Q. ) ) |
|
| 99 | 98 | biimparc | |- ( ( B e. Q. /\ ( A +Q x ) = B ) -> ( A +Q x ) e. Q. ) |
| 100 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 101 | 100 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 102 | 0nnq | |- -. (/) e. Q. |
|
| 103 | 101 102 | ndmovrcl | |- ( ( A +Q x ) e. Q. -> ( A e. Q. /\ x e. Q. ) ) |
| 104 | ltaddnq | |- ( ( A e. Q. /\ x e. Q. ) -> A |
|
| 105 | 99 103 104 | 3syl | |- ( ( B e. Q. /\ ( A +Q x ) = B ) -> A |
| 106 | simpr | |- ( ( B e. Q. /\ ( A +Q x ) = B ) -> ( A +Q x ) = B ) |
|
| 107 | 105 106 | breqtrd | |- ( ( B e. Q. /\ ( A +Q x ) = B ) -> A |
| 108 | 107 | ex | |- ( B e. Q. -> ( ( A +Q x ) = B -> A |
| 109 | 108 | exlimdv | |- ( B e. Q. -> ( E. x ( A +Q x ) = B -> A |
| 110 | 97 109 | impbid2 | |- ( B e. Q. -> ( AE. x ( A +Q x ) = B ) ) |