This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnmadd | |- ( ( A e. P. /\ B e. A ) -> E. x ( B +Q x ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnmax | |- ( ( A e. P. /\ B e. A ) -> E. y e. A B |
|
| 2 | ltrelnq | |- |
|
| 3 | 2 | brel | |- ( B( B e. Q. /\ y e. Q. ) ) |
| 4 | 3 | simprd | |- ( By e. Q. ) |
| 5 | ltexnq | |- ( y e. Q. -> ( BE. x ( B +Q x ) = y ) ) |
|
| 6 | 5 | biimpcd | |- ( B( y e. Q. -> E. x ( B +Q x ) = y ) ) |
| 7 | 4 6 | mpd | |- ( BE. x ( B +Q x ) = y ) |
| 8 | eleq1a | |- ( y e. A -> ( ( B +Q x ) = y -> ( B +Q x ) e. A ) ) |
|
| 9 | 8 | eximdv | |- ( y e. A -> ( E. x ( B +Q x ) = y -> E. x ( B +Q x ) e. A ) ) |
| 10 | 7 9 | syl5 | |- ( y e. A -> ( BE. x ( B +Q x ) e. A ) ) |
| 11 | 10 | rexlimiv | |- ( E. y e. A BE. x ( B +Q x ) e. A ) |
| 12 | 1 11 | syl | |- ( ( A e. P. /\ B e. A ) -> E. x ( B +Q x ) e. A ) |