This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive fractions is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addassnq | |- ( ( A +Q B ) +Q C ) = ( A +Q ( B +Q C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addasspi | |- ( ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) ) |
|
| 2 | ovex | |- ( ( 1st ` A ) .N ( 2nd ` B ) ) e. _V |
|
| 3 | ovex | |- ( ( 1st ` B ) .N ( 2nd ` A ) ) e. _V |
|
| 4 | fvex | |- ( 2nd ` C ) e. _V |
|
| 5 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 6 | distrpi | |- ( x .N ( y +N z ) ) = ( ( x .N y ) +N ( x .N z ) ) |
|
| 7 | 2 3 4 5 6 | caovdir | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) |
| 8 | mulasspi | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) = ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
|
| 9 | 8 | oveq1i | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) |
| 10 | 7 9 | eqtri | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) |
| 11 | 10 | oveq1i | |- ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) |
| 12 | ovex | |- ( ( 1st ` B ) .N ( 2nd ` C ) ) e. _V |
|
| 13 | ovex | |- ( ( 1st ` C ) .N ( 2nd ` B ) ) e. _V |
|
| 14 | fvex | |- ( 2nd ` A ) e. _V |
|
| 15 | 12 13 14 5 6 | caovdir | |- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) = ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) .N ( 2nd ` A ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) ) |
| 16 | fvex | |- ( 1st ` B ) e. _V |
|
| 17 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 18 | 16 4 14 5 17 | caov32 | |- ( ( ( 1st ` B ) .N ( 2nd ` C ) ) .N ( 2nd ` A ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) |
| 19 | mulasspi | |- ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) = ( ( 1st ` C ) .N ( ( 2nd ` B ) .N ( 2nd ` A ) ) ) |
|
| 20 | mulcompi | |- ( ( 2nd ` B ) .N ( 2nd ` A ) ) = ( ( 2nd ` A ) .N ( 2nd ` B ) ) |
|
| 21 | 20 | oveq2i | |- ( ( 1st ` C ) .N ( ( 2nd ` B ) .N ( 2nd ` A ) ) ) = ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) |
| 22 | 19 21 | eqtri | |- ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) = ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) |
| 23 | 18 22 | oveq12i | |- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) .N ( 2nd ` A ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) ) = ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) |
| 24 | 15 23 | eqtri | |- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) = ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) |
| 25 | 24 | oveq2i | |- ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) ) |
| 26 | 1 11 25 | 3eqtr4i | |- ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) |
| 27 | mulasspi | |- ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
|
| 28 | 26 27 | opeq12i | |- <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. |
| 29 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 30 | 29 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A e. ( N. X. N. ) ) |
| 31 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 32 | 31 | 3ad2ant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> B e. ( N. X. N. ) ) |
| 33 | addpipq2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A +pQ B ) = <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
|
| 34 | 30 32 33 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +pQ B ) = <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
| 35 | relxp | |- Rel ( N. X. N. ) |
|
| 36 | elpqn | |- ( C e. Q. -> C e. ( N. X. N. ) ) |
|
| 37 | 36 | 3ad2ant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C e. ( N. X. N. ) ) |
| 38 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
|
| 39 | 35 37 38 | sylancr | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
| 40 | 34 39 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +pQ B ) +pQ C ) = ( <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) ) |
| 41 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 42 | 30 41 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` A ) e. N. ) |
| 43 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 44 | 32 43 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` B ) e. N. ) |
| 45 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 46 | 42 44 45 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 47 | xp1st | |- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
|
| 48 | 32 47 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` B ) e. N. ) |
| 49 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 50 | 30 49 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` A ) e. N. ) |
| 51 | mulclpi | |- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) |
|
| 52 | 48 50 51 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) |
| 53 | addclpi | |- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. /\ ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) e. N. ) |
|
| 54 | 46 52 53 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) e. N. ) |
| 55 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 56 | 50 44 55 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 57 | xp1st | |- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
|
| 58 | 37 57 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` C ) e. N. ) |
| 59 | xp2nd | |- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
|
| 60 | 37 59 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` C ) e. N. ) |
| 61 | addpipq | |- ( ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) /\ ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) = <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
|
| 62 | 54 56 58 60 61 | syl22anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) = <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
| 63 | 40 62 | eqtrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +pQ B ) +pQ C ) = <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
| 64 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 65 | 35 30 64 | sylancr | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 66 | addpipq2 | |- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
|
| 67 | 32 37 66 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 68 | 65 67 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +pQ ( B +pQ C ) ) = ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 69 | mulclpi | |- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 70 | 48 60 69 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 71 | mulclpi | |- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
|
| 72 | 58 44 71 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 73 | addclpi | |- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
|
| 74 | 70 72 73 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 75 | mulclpi | |- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 76 | 44 60 75 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 77 | addpipq | |- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
|
| 78 | 42 50 74 76 77 | syl22anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 79 | 68 78 | eqtrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +pQ ( B +pQ C ) ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 80 | 28 63 79 | 3eqtr4a | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +pQ B ) +pQ C ) = ( A +pQ ( B +pQ C ) ) ) |
| 81 | 80 | fveq2d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( /Q ` ( ( A +pQ B ) +pQ C ) ) = ( /Q ` ( A +pQ ( B +pQ C ) ) ) ) |
| 82 | adderpq | |- ( ( /Q ` ( A +pQ B ) ) +Q ( /Q ` C ) ) = ( /Q ` ( ( A +pQ B ) +pQ C ) ) |
|
| 83 | adderpq | |- ( ( /Q ` A ) +Q ( /Q ` ( B +pQ C ) ) ) = ( /Q ` ( A +pQ ( B +pQ C ) ) ) |
|
| 84 | 81 82 83 | 3eqtr4g | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( /Q ` ( A +pQ B ) ) +Q ( /Q ` C ) ) = ( ( /Q ` A ) +Q ( /Q ` ( B +pQ C ) ) ) ) |
| 85 | addpqnq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |
|
| 86 | 85 | 3adant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |
| 87 | nqerid | |- ( C e. Q. -> ( /Q ` C ) = C ) |
|
| 88 | 87 | eqcomd | |- ( C e. Q. -> C = ( /Q ` C ) ) |
| 89 | 88 | 3ad2ant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C = ( /Q ` C ) ) |
| 90 | 86 89 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +Q B ) +Q C ) = ( ( /Q ` ( A +pQ B ) ) +Q ( /Q ` C ) ) ) |
| 91 | nqerid | |- ( A e. Q. -> ( /Q ` A ) = A ) |
|
| 92 | 91 | eqcomd | |- ( A e. Q. -> A = ( /Q ` A ) ) |
| 93 | 92 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = ( /Q ` A ) ) |
| 94 | addpqnq | |- ( ( B e. Q. /\ C e. Q. ) -> ( B +Q C ) = ( /Q ` ( B +pQ C ) ) ) |
|
| 95 | 94 | 3adant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B +Q C ) = ( /Q ` ( B +pQ C ) ) ) |
| 96 | 93 95 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +Q ( B +Q C ) ) = ( ( /Q ` A ) +Q ( /Q ` ( B +pQ C ) ) ) ) |
| 97 | 84 90 96 | 3eqtr4d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +Q B ) +Q C ) = ( A +Q ( B +Q C ) ) ) |
| 98 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 99 | 98 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 100 | 0nnq | |- -. (/) e. Q. |
|
| 101 | 99 100 | ndmovass | |- ( -. ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +Q B ) +Q C ) = ( A +Q ( B +Q C ) ) ) |
| 102 | 97 101 | pm2.61i | |- ( ( A +Q B ) +Q C ) = ( A +Q ( B +Q C ) ) |