This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclnq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) e. Q. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addpqnq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |
|
| 2 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 3 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 4 | addpqf | |- +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) |
|
| 5 | 4 | fovcl | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A +pQ B ) e. ( N. X. N. ) ) |
| 6 | 2 3 5 | syl2an | |- ( ( A e. Q. /\ B e. Q. ) -> ( A +pQ B ) e. ( N. X. N. ) ) |
| 7 | nqercl | |- ( ( A +pQ B ) e. ( N. X. N. ) -> ( /Q ` ( A +pQ B ) ) e. Q. ) |
|
| 8 | 6 7 | syl | |- ( ( A e. Q. /\ B e. Q. ) -> ( /Q ` ( A +pQ B ) ) e. Q. ) |
| 9 | 1 8 | eqeltrd | |- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) e. Q. ) |