This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | |- F = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y G z ) } ) |
|
| genp.2 | |- ( ( y e. Q. /\ z e. Q. ) -> ( y G z ) e. Q. ) |
||
| Assertion | genpprecl | |- ( ( A e. P. /\ B e. P. ) -> ( ( C e. A /\ D e. B ) -> ( C G D ) e. ( A F B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | |- F = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y G z ) } ) |
|
| 2 | genp.2 | |- ( ( y e. Q. /\ z e. Q. ) -> ( y G z ) e. Q. ) |
|
| 3 | eqid | |- ( C G D ) = ( C G D ) |
|
| 4 | rspceov | |- ( ( C e. A /\ D e. B /\ ( C G D ) = ( C G D ) ) -> E. g e. A E. h e. B ( C G D ) = ( g G h ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( C e. A /\ D e. B ) -> E. g e. A E. h e. B ( C G D ) = ( g G h ) ) |
| 6 | 1 2 | genpelv | |- ( ( A e. P. /\ B e. P. ) -> ( ( C G D ) e. ( A F B ) <-> E. g e. A E. h e. B ( C G D ) = ( g G h ) ) ) |
| 7 | 5 6 | imbitrrid | |- ( ( A e. P. /\ B e. P. ) -> ( ( C e. A /\ D e. B ) -> ( C G D ) e. ( A F B ) ) ) |