This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansncol | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( span ` { ( B .h A ) } ) = ( span ` { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | |- ( ( y e. CC /\ B e. CC ) -> ( y x. B ) e. CC ) |
|
| 2 | 1 | ancoms | |- ( ( B e. CC /\ y e. CC ) -> ( y x. B ) e. CC ) |
| 3 | 2 | adantll | |- ( ( ( A e. ~H /\ B e. CC ) /\ y e. CC ) -> ( y x. B ) e. CC ) |
| 4 | ax-hvmulass | |- ( ( y e. CC /\ B e. CC /\ A e. ~H ) -> ( ( y x. B ) .h A ) = ( y .h ( B .h A ) ) ) |
|
| 5 | 4 | 3com13 | |- ( ( A e. ~H /\ B e. CC /\ y e. CC ) -> ( ( y x. B ) .h A ) = ( y .h ( B .h A ) ) ) |
| 6 | 5 | 3expa | |- ( ( ( A e. ~H /\ B e. CC ) /\ y e. CC ) -> ( ( y x. B ) .h A ) = ( y .h ( B .h A ) ) ) |
| 7 | 6 | eqeq2d | |- ( ( ( A e. ~H /\ B e. CC ) /\ y e. CC ) -> ( x = ( ( y x. B ) .h A ) <-> x = ( y .h ( B .h A ) ) ) ) |
| 8 | 7 | biimprd | |- ( ( ( A e. ~H /\ B e. CC ) /\ y e. CC ) -> ( x = ( y .h ( B .h A ) ) -> x = ( ( y x. B ) .h A ) ) ) |
| 9 | oveq1 | |- ( z = ( y x. B ) -> ( z .h A ) = ( ( y x. B ) .h A ) ) |
|
| 10 | 9 | rspceeqv | |- ( ( ( y x. B ) e. CC /\ x = ( ( y x. B ) .h A ) ) -> E. z e. CC x = ( z .h A ) ) |
| 11 | 3 8 10 | syl6an | |- ( ( ( A e. ~H /\ B e. CC ) /\ y e. CC ) -> ( x = ( y .h ( B .h A ) ) -> E. z e. CC x = ( z .h A ) ) ) |
| 12 | 11 | rexlimdva | |- ( ( A e. ~H /\ B e. CC ) -> ( E. y e. CC x = ( y .h ( B .h A ) ) -> E. z e. CC x = ( z .h A ) ) ) |
| 13 | 12 | 3adant3 | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( E. y e. CC x = ( y .h ( B .h A ) ) -> E. z e. CC x = ( z .h A ) ) ) |
| 14 | divcl | |- ( ( z e. CC /\ B e. CC /\ B =/= 0 ) -> ( z / B ) e. CC ) |
|
| 15 | 14 | 3expb | |- ( ( z e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( z / B ) e. CC ) |
| 16 | 15 | adantlr | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( z / B ) e. CC ) |
| 17 | simprl | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> B e. CC ) |
|
| 18 | simplr | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> A e. ~H ) |
|
| 19 | ax-hvmulass | |- ( ( ( z / B ) e. CC /\ B e. CC /\ A e. ~H ) -> ( ( ( z / B ) x. B ) .h A ) = ( ( z / B ) .h ( B .h A ) ) ) |
|
| 20 | 16 17 18 19 | syl3anc | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( z / B ) x. B ) .h A ) = ( ( z / B ) .h ( B .h A ) ) ) |
| 21 | divcan1 | |- ( ( z e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( z / B ) x. B ) = z ) |
|
| 22 | 21 | 3expb | |- ( ( z e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( z / B ) x. B ) = z ) |
| 23 | 22 | adantlr | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( z / B ) x. B ) = z ) |
| 24 | 23 | oveq1d | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( z / B ) x. B ) .h A ) = ( z .h A ) ) |
| 25 | 20 24 | eqtr3d | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( z / B ) .h ( B .h A ) ) = ( z .h A ) ) |
| 26 | 25 | eqeq2d | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( x = ( ( z / B ) .h ( B .h A ) ) <-> x = ( z .h A ) ) ) |
| 27 | 26 | biimprd | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( x = ( z .h A ) -> x = ( ( z / B ) .h ( B .h A ) ) ) ) |
| 28 | oveq1 | |- ( y = ( z / B ) -> ( y .h ( B .h A ) ) = ( ( z / B ) .h ( B .h A ) ) ) |
|
| 29 | 28 | rspceeqv | |- ( ( ( z / B ) e. CC /\ x = ( ( z / B ) .h ( B .h A ) ) ) -> E. y e. CC x = ( y .h ( B .h A ) ) ) |
| 30 | 16 27 29 | syl6an | |- ( ( ( z e. CC /\ A e. ~H ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( x = ( z .h A ) -> E. y e. CC x = ( y .h ( B .h A ) ) ) ) |
| 31 | 30 | exp43 | |- ( z e. CC -> ( A e. ~H -> ( B e. CC -> ( B =/= 0 -> ( x = ( z .h A ) -> E. y e. CC x = ( y .h ( B .h A ) ) ) ) ) ) ) |
| 32 | 31 | com4l | |- ( A e. ~H -> ( B e. CC -> ( B =/= 0 -> ( z e. CC -> ( x = ( z .h A ) -> E. y e. CC x = ( y .h ( B .h A ) ) ) ) ) ) ) |
| 33 | 32 | 3imp | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( z e. CC -> ( x = ( z .h A ) -> E. y e. CC x = ( y .h ( B .h A ) ) ) ) ) |
| 34 | 33 | rexlimdv | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( E. z e. CC x = ( z .h A ) -> E. y e. CC x = ( y .h ( B .h A ) ) ) ) |
| 35 | 13 34 | impbid | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( E. y e. CC x = ( y .h ( B .h A ) ) <-> E. z e. CC x = ( z .h A ) ) ) |
| 36 | hvmulcl | |- ( ( B e. CC /\ A e. ~H ) -> ( B .h A ) e. ~H ) |
|
| 37 | 36 | ancoms | |- ( ( A e. ~H /\ B e. CC ) -> ( B .h A ) e. ~H ) |
| 38 | elspansn | |- ( ( B .h A ) e. ~H -> ( x e. ( span ` { ( B .h A ) } ) <-> E. y e. CC x = ( y .h ( B .h A ) ) ) ) |
|
| 39 | 37 38 | syl | |- ( ( A e. ~H /\ B e. CC ) -> ( x e. ( span ` { ( B .h A ) } ) <-> E. y e. CC x = ( y .h ( B .h A ) ) ) ) |
| 40 | 39 | 3adant3 | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( x e. ( span ` { ( B .h A ) } ) <-> E. y e. CC x = ( y .h ( B .h A ) ) ) ) |
| 41 | elspansn | |- ( A e. ~H -> ( x e. ( span ` { A } ) <-> E. z e. CC x = ( z .h A ) ) ) |
|
| 42 | 41 | 3ad2ant1 | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( x e. ( span ` { A } ) <-> E. z e. CC x = ( z .h A ) ) ) |
| 43 | 35 40 42 | 3bitr4d | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( x e. ( span ` { ( B .h A ) } ) <-> x e. ( span ` { A } ) ) ) |
| 44 | 43 | eqrdv | |- ( ( A e. ~H /\ B e. CC /\ B =/= 0 ) -> ( span ` { ( B .h A ) } ) = ( span ` { A } ) ) |