This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of a scalar product of a singleton. (Contributed by NM, 23-Apr-2014) (Proof shortened by Mario Carneiro, 4-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn.f | |- F = ( Scalar ` W ) |
|
| lspsn.k | |- K = ( Base ` F ) |
||
| lspsn.v | |- V = ( Base ` W ) |
||
| lspsn.t | |- .x. = ( .s ` W ) |
||
| lspsn.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsnvsi | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( N ` { ( R .x. X ) } ) C_ ( N ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | |- F = ( Scalar ` W ) |
|
| 2 | lspsn.k | |- K = ( Base ` F ) |
|
| 3 | lspsn.v | |- V = ( Base ` W ) |
|
| 4 | lspsn.t | |- .x. = ( .s ` W ) |
|
| 5 | lspsn.n | |- N = ( LSpan ` W ) |
|
| 6 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 7 | simp1 | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> W e. LMod ) |
|
| 8 | simp3 | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> X e. V ) |
|
| 9 | 8 | snssd | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> { X } C_ V ) |
| 10 | 3 6 5 | lspcl | |- ( ( W e. LMod /\ { X } C_ V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 11 | 7 9 10 | syl2anc | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 12 | simp2 | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> R e. K ) |
|
| 13 | 3 4 1 2 5 7 12 8 | ellspsni | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. ( N ` { X } ) ) |
| 14 | 6 5 7 11 13 | ellspsn5 | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( N ` { ( R .x. X ) } ) C_ ( N ` { X } ) ) |