This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparable spans of singletons must have proportional vectors. See lspsneq for equal span version. (Contributed by NM, 7-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnss2.v | |- V = ( Base ` W ) |
|
| lspsnss2.s | |- S = ( Scalar ` W ) |
||
| lspsnss2.k | |- K = ( Base ` S ) |
||
| lspsnss2.t | |- .x. = ( .s ` W ) |
||
| lspsnss2.n | |- N = ( LSpan ` W ) |
||
| lspsnss2.w | |- ( ph -> W e. LMod ) |
||
| lspsnss2.x | |- ( ph -> X e. V ) |
||
| lspsnss2.y | |- ( ph -> Y e. V ) |
||
| Assertion | lspsnss2 | |- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> E. k e. K X = ( k .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss2.v | |- V = ( Base ` W ) |
|
| 2 | lspsnss2.s | |- S = ( Scalar ` W ) |
|
| 3 | lspsnss2.k | |- K = ( Base ` S ) |
|
| 4 | lspsnss2.t | |- .x. = ( .s ` W ) |
|
| 5 | lspsnss2.n | |- N = ( LSpan ` W ) |
|
| 6 | lspsnss2.w | |- ( ph -> W e. LMod ) |
|
| 7 | lspsnss2.x | |- ( ph -> X e. V ) |
|
| 8 | lspsnss2.y | |- ( ph -> Y e. V ) |
|
| 9 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 10 | 1 9 5 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 11 | 6 8 10 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 12 | 1 9 5 6 11 7 | ellspsn5b | |- ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
| 13 | 2 3 1 4 5 | ellspsn | |- ( ( W e. LMod /\ Y e. V ) -> ( X e. ( N ` { Y } ) <-> E. k e. K X = ( k .x. Y ) ) ) |
| 14 | 6 8 13 | syl2anc | |- ( ph -> ( X e. ( N ` { Y } ) <-> E. k e. K X = ( k .x. Y ) ) ) |
| 15 | 12 14 | bitr3d | |- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> E. k e. K X = ( k .x. Y ) ) ) |