This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of span of the singleton of a vector. ( elspansn analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn.f | |- F = ( Scalar ` W ) |
|
| lspsn.k | |- K = ( Base ` F ) |
||
| lspsn.v | |- V = ( Base ` W ) |
||
| lspsn.t | |- .x. = ( .s ` W ) |
||
| lspsn.n | |- N = ( LSpan ` W ) |
||
| Assertion | ellspsn | |- ( ( W e. LMod /\ X e. V ) -> ( U e. ( N ` { X } ) <-> E. k e. K U = ( k .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | |- F = ( Scalar ` W ) |
|
| 2 | lspsn.k | |- K = ( Base ` F ) |
|
| 3 | lspsn.v | |- V = ( Base ` W ) |
|
| 4 | lspsn.t | |- .x. = ( .s ` W ) |
|
| 5 | lspsn.n | |- N = ( LSpan ` W ) |
|
| 6 | 1 2 3 4 5 | lspsn | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) = { v | E. k e. K v = ( k .x. X ) } ) |
| 7 | 6 | eleq2d | |- ( ( W e. LMod /\ X e. V ) -> ( U e. ( N ` { X } ) <-> U e. { v | E. k e. K v = ( k .x. X ) } ) ) |
| 8 | id | |- ( U = ( k .x. X ) -> U = ( k .x. X ) ) |
|
| 9 | ovex | |- ( k .x. X ) e. _V |
|
| 10 | 8 9 | eqeltrdi | |- ( U = ( k .x. X ) -> U e. _V ) |
| 11 | 10 | rexlimivw | |- ( E. k e. K U = ( k .x. X ) -> U e. _V ) |
| 12 | eqeq1 | |- ( v = U -> ( v = ( k .x. X ) <-> U = ( k .x. X ) ) ) |
|
| 13 | 12 | rexbidv | |- ( v = U -> ( E. k e. K v = ( k .x. X ) <-> E. k e. K U = ( k .x. X ) ) ) |
| 14 | 11 13 | elab3 | |- ( U e. { v | E. k e. K v = ( k .x. X ) } <-> E. k e. K U = ( k .x. X ) ) |
| 15 | 7 14 | bitrdi | |- ( ( W e. LMod /\ X e. V ) -> ( U e. ( N ` { X } ) <-> E. k e. K U = ( k .x. X ) ) ) |