This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneq0b.v | |- V = ( Base ` W ) |
|
| lspsneq0b.o | |- .0. = ( 0g ` W ) |
||
| lspsneq0b.n | |- N = ( LSpan ` W ) |
||
| lspsneq0b.w | |- ( ph -> W e. LMod ) |
||
| lspsneq0b.x | |- ( ph -> X e. V ) |
||
| lspsneq0b.y | |- ( ph -> Y e. V ) |
||
| lspsneq0b.e | |- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
||
| Assertion | lspsneq0b | |- ( ph -> ( X = .0. <-> Y = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneq0b.v | |- V = ( Base ` W ) |
|
| 2 | lspsneq0b.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspsneq0b.n | |- N = ( LSpan ` W ) |
|
| 4 | lspsneq0b.w | |- ( ph -> W e. LMod ) |
|
| 5 | lspsneq0b.x | |- ( ph -> X e. V ) |
|
| 6 | lspsneq0b.y | |- ( ph -> Y e. V ) |
|
| 7 | lspsneq0b.e | |- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
|
| 8 | 7 | adantr | |- ( ( ph /\ X = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 9 | 1 2 3 | lspsneq0 | |- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
| 10 | 4 5 9 | syl2anc | |- ( ph -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
| 11 | 10 | biimpar | |- ( ( ph /\ X = .0. ) -> ( N ` { X } ) = { .0. } ) |
| 12 | 8 11 | eqtr3d | |- ( ( ph /\ X = .0. ) -> ( N ` { Y } ) = { .0. } ) |
| 13 | 1 2 3 | lspsneq0 | |- ( ( W e. LMod /\ Y e. V ) -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
| 14 | 4 6 13 | syl2anc | |- ( ph -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ X = .0. ) -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
| 16 | 12 15 | mpbid | |- ( ( ph /\ X = .0. ) -> Y = .0. ) |
| 17 | 7 | adantr | |- ( ( ph /\ Y = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 18 | 14 | biimpar | |- ( ( ph /\ Y = .0. ) -> ( N ` { Y } ) = { .0. } ) |
| 19 | 17 18 | eqtrd | |- ( ( ph /\ Y = .0. ) -> ( N ` { X } ) = { .0. } ) |
| 20 | 10 | adantr | |- ( ( ph /\ Y = .0. ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
| 21 | 19 20 | mpbid | |- ( ( ph /\ Y = .0. ) -> X = .0. ) |
| 22 | 16 21 | impbida | |- ( ph -> ( X = .0. <-> Y = .0. ) ) |