This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneu.v | |- V = ( Base ` W ) |
|
| lspsneu.s | |- S = ( Scalar ` W ) |
||
| lspsneu.k | |- K = ( Base ` S ) |
||
| lspsneu.o | |- O = ( 0g ` S ) |
||
| lspsneu.t | |- .x. = ( .s ` W ) |
||
| lspsneu.z | |- .0. = ( 0g ` W ) |
||
| lspsneu.n | |- N = ( LSpan ` W ) |
||
| lspsneu.w | |- ( ph -> W e. LVec ) |
||
| lspsneu.x | |- ( ph -> X e. V ) |
||
| lspsneu.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
| Assertion | lspsneu | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E! k e. ( K \ { O } ) X = ( k .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneu.v | |- V = ( Base ` W ) |
|
| 2 | lspsneu.s | |- S = ( Scalar ` W ) |
|
| 3 | lspsneu.k | |- K = ( Base ` S ) |
|
| 4 | lspsneu.o | |- O = ( 0g ` S ) |
|
| 5 | lspsneu.t | |- .x. = ( .s ` W ) |
|
| 6 | lspsneu.z | |- .0. = ( 0g ` W ) |
|
| 7 | lspsneu.n | |- N = ( LSpan ` W ) |
|
| 8 | lspsneu.w | |- ( ph -> W e. LVec ) |
|
| 9 | lspsneu.x | |- ( ph -> X e. V ) |
|
| 10 | lspsneu.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
| 11 | 10 | eldifad | |- ( ph -> Y e. V ) |
| 12 | 1 2 3 4 5 7 8 9 11 | lspsneq | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E. j e. ( K \ { O } ) X = ( j .x. Y ) ) ) |
| 13 | 12 | biimpd | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> E. j e. ( K \ { O } ) X = ( j .x. Y ) ) ) |
| 14 | eqtr2 | |- ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> ( j .x. Y ) = ( i .x. Y ) ) |
|
| 15 | 14 | 3ad2ant3 | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> ( j .x. Y ) = ( i .x. Y ) ) |
| 16 | simp1l | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> ph ) |
|
| 17 | 16 8 | syl | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> W e. LVec ) |
| 18 | simp2l | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> j e. ( K \ { O } ) ) |
|
| 19 | 18 | eldifad | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> j e. K ) |
| 20 | simp2r | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> i e. ( K \ { O } ) ) |
|
| 21 | 20 | eldifad | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> i e. K ) |
| 22 | 16 11 | syl | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> Y e. V ) |
| 23 | eldifsni | |- ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) |
|
| 24 | 16 10 23 | 3syl | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> Y =/= .0. ) |
| 25 | 1 5 2 3 6 17 19 21 22 24 | lvecvscan2 | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> ( ( j .x. Y ) = ( i .x. Y ) <-> j = i ) ) |
| 26 | 15 25 | mpbid | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> j = i ) |
| 27 | 26 | 3exp | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) -> ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) |
| 28 | 27 | ex | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> ( ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) -> ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) ) |
| 29 | 28 | ralrimdvv | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> A. j e. ( K \ { O } ) A. i e. ( K \ { O } ) ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) |
| 30 | 13 29 | jcad | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> ( E. j e. ( K \ { O } ) X = ( j .x. Y ) /\ A. j e. ( K \ { O } ) A. i e. ( K \ { O } ) ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) ) |
| 31 | oveq1 | |- ( j = i -> ( j .x. Y ) = ( i .x. Y ) ) |
|
| 32 | 31 | eqeq2d | |- ( j = i -> ( X = ( j .x. Y ) <-> X = ( i .x. Y ) ) ) |
| 33 | 32 | reu4 | |- ( E! j e. ( K \ { O } ) X = ( j .x. Y ) <-> ( E. j e. ( K \ { O } ) X = ( j .x. Y ) /\ A. j e. ( K \ { O } ) A. i e. ( K \ { O } ) ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) |
| 34 | 30 33 | imbitrrdi | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> E! j e. ( K \ { O } ) X = ( j .x. Y ) ) ) |
| 35 | reurex | |- ( E! j e. ( K \ { O } ) X = ( j .x. Y ) -> E. j e. ( K \ { O } ) X = ( j .x. Y ) ) |
|
| 36 | 35 12 | imbitrrid | |- ( ph -> ( E! j e. ( K \ { O } ) X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 37 | 34 36 | impbid | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E! j e. ( K \ { O } ) X = ( j .x. Y ) ) ) |
| 38 | oveq1 | |- ( j = k -> ( j .x. Y ) = ( k .x. Y ) ) |
|
| 39 | 38 | eqeq2d | |- ( j = k -> ( X = ( j .x. Y ) <-> X = ( k .x. Y ) ) ) |
| 40 | 39 | cbvreuvw | |- ( E! j e. ( K \ { O } ) X = ( j .x. Y ) <-> E! k e. ( K \ { O } ) X = ( k .x. Y ) ) |
| 41 | 37 40 | bitrdi | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E! k e. ( K \ { O } ) X = ( k .x. Y ) ) ) |