This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | |- B = ( Base ` G ) |
|
| lsmfval.a | |- .+ = ( +g ` G ) |
||
| lsmfval.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmelvalx | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | |- B = ( Base ` G ) |
|
| 2 | lsmfval.a | |- .+ = ( +g ` G ) |
|
| 3 | lsmfval.s | |- .(+) = ( LSSum ` G ) |
|
| 4 | 1 2 3 | lsmvalx | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ran ( y e. T , z e. U |-> ( y .+ z ) ) ) |
| 5 | 4 | eleq2d | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( X e. ( T .(+) U ) <-> X e. ran ( y e. T , z e. U |-> ( y .+ z ) ) ) ) |
| 6 | eqid | |- ( y e. T , z e. U |-> ( y .+ z ) ) = ( y e. T , z e. U |-> ( y .+ z ) ) |
|
| 7 | ovex | |- ( y .+ z ) e. _V |
|
| 8 | 6 7 | elrnmpo | |- ( X e. ran ( y e. T , z e. U |-> ( y .+ z ) ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) |
| 9 | 5 8 | bitrdi | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) ) |