This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | |- B = ( Base ` G ) |
|
| lsmless2.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmssv | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | |- B = ( Base ` G ) |
|
| 2 | lsmless2.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | 1 3 2 | lsmvalx | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) ) |
| 5 | simpl1 | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ ( x e. T /\ y e. U ) ) -> G e. Mnd ) |
|
| 6 | simp2 | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> T C_ B ) |
|
| 7 | 6 | sselda | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ x e. T ) -> x e. B ) |
| 8 | 7 | adantrr | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ ( x e. T /\ y e. U ) ) -> x e. B ) |
| 9 | simp3 | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> U C_ B ) |
|
| 10 | 9 | sselda | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ y e. U ) -> y e. B ) |
| 11 | 10 | adantrl | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ ( x e. T /\ y e. U ) ) -> y e. B ) |
| 12 | 1 3 | mndcl | |- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) |
| 13 | 5 8 11 12 | syl3anc | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ ( x e. T /\ y e. U ) ) -> ( x ( +g ` G ) y ) e. B ) |
| 14 | 13 | ralrimivva | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> A. x e. T A. y e. U ( x ( +g ` G ) y ) e. B ) |
| 15 | eqid | |- ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) = ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) |
|
| 16 | 15 | fmpo | |- ( A. x e. T A. y e. U ( x ( +g ` G ) y ) e. B <-> ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) : ( T X. U ) --> B ) |
| 17 | 14 16 | sylib | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) : ( T X. U ) --> B ) |
| 18 | 17 | frnd | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) C_ B ) |
| 19 | 4 18 | eqsstrd | |- ( ( G e. Mnd /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) C_ B ) |