This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | |- B = ( Base ` G ) |
|
| lsmless2.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmub1x | |- ( ( T C_ B /\ U e. ( SubMnd ` G ) ) -> T C_ ( T .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | |- B = ( Base ` G ) |
|
| 2 | lsmless2.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | submrcl | |- ( U e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 4 | 3 | ad2antlr | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> G e. Mnd ) |
| 5 | simpll | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> T C_ B ) |
|
| 6 | simpr | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> x e. T ) |
|
| 7 | 5 6 | sseldd | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> x e. B ) |
| 8 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 9 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 10 | 1 8 9 | mndrid | |- ( ( G e. Mnd /\ x e. B ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
| 11 | 4 7 10 | syl2anc | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
| 12 | 1 | submss | |- ( U e. ( SubMnd ` G ) -> U C_ B ) |
| 13 | 12 | ad2antlr | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> U C_ B ) |
| 14 | 9 | subm0cl | |- ( U e. ( SubMnd ` G ) -> ( 0g ` G ) e. U ) |
| 15 | 14 | ad2antlr | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> ( 0g ` G ) e. U ) |
| 16 | 1 8 2 | lsmelvalix | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ ( x e. T /\ ( 0g ` G ) e. U ) ) -> ( x ( +g ` G ) ( 0g ` G ) ) e. ( T .(+) U ) ) |
| 17 | 4 5 13 6 15 16 | syl32anc | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> ( x ( +g ` G ) ( 0g ` G ) ) e. ( T .(+) U ) ) |
| 18 | 11 17 | eqeltrrd | |- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> x e. ( T .(+) U ) ) |
| 19 | 18 | ex | |- ( ( T C_ B /\ U e. ( SubMnd ` G ) ) -> ( x e. T -> x e. ( T .(+) U ) ) ) |
| 20 | 19 | ssrdv | |- ( ( T C_ B /\ U e. ( SubMnd ` G ) ) -> T C_ ( T .(+) U ) ) |