This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | |- B = ( Base ` G ) |
|
| lsmfval.a | |- .+ = ( +g ` G ) |
||
| lsmfval.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmelvalix | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( X e. T /\ Y e. U ) ) -> ( X .+ Y ) e. ( T .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | |- B = ( Base ` G ) |
|
| 2 | lsmfval.a | |- .+ = ( +g ` G ) |
|
| 3 | lsmfval.s | |- .(+) = ( LSSum ` G ) |
|
| 4 | eqid | |- ( X .+ Y ) = ( X .+ Y ) |
|
| 5 | rspceov | |- ( ( X e. T /\ Y e. U /\ ( X .+ Y ) = ( X .+ Y ) ) -> E. x e. T E. y e. U ( X .+ Y ) = ( x .+ y ) ) |
|
| 6 | 4 5 | mp3an3 | |- ( ( X e. T /\ Y e. U ) -> E. x e. T E. y e. U ( X .+ Y ) = ( x .+ y ) ) |
| 7 | 1 2 3 | lsmelvalx | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( ( X .+ Y ) e. ( T .(+) U ) <-> E. x e. T E. y e. U ( X .+ Y ) = ( x .+ y ) ) ) |
| 8 | 7 | biimpar | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ E. x e. T E. y e. U ( X .+ Y ) = ( x .+ y ) ) -> ( X .+ Y ) e. ( T .(+) U ) ) |
| 9 | 6 8 | sylan2 | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( X e. T /\ Y e. U ) ) -> ( X .+ Y ) e. ( T .(+) U ) ) |