This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelval.a | |- .+ = ( +g ` G ) |
|
| lsmelval.p | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmelval | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelval.a | |- .+ = ( +g ` G ) |
|
| 2 | lsmelval.p | |- .(+) = ( LSSum ` G ) |
|
| 3 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 4 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 6 | 4 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 7 | 4 1 2 | lsmelvalx | |- ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) ) |
| 8 | 3 5 6 7 | syl2an3an | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) ) |