This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelval.a | |- .+ = ( +g ` G ) |
|
| lsmelval.p | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmelvali | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( X e. T /\ Y e. U ) ) -> ( X .+ Y ) e. ( T .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelval.a | |- .+ = ( +g ` G ) |
|
| 2 | lsmelval.p | |- .(+) = ( LSSum ` G ) |
|
| 3 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 4 | 3 | adantr | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 7 | 6 | adantr | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( Base ` G ) ) |
| 8 | 5 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 9 | 8 | adantl | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U C_ ( Base ` G ) ) |
| 10 | 4 7 9 | 3jca | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) ) |
| 11 | 5 1 2 | lsmelvalix | |- ( ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) /\ ( X e. T /\ Y e. U ) ) -> ( X .+ Y ) e. ( T .(+) U ) ) |
| 12 | 10 11 | sylan | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( X e. T /\ Y e. U ) ) -> ( X .+ Y ) e. ( T .(+) U ) ) |