This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. ( hvsubdistr1 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubdi.v | |- V = ( Base ` W ) |
|
| lmodsubdi.t | |- .x. = ( .s ` W ) |
||
| lmodsubdi.f | |- F = ( Scalar ` W ) |
||
| lmodsubdi.k | |- K = ( Base ` F ) |
||
| lmodsubdi.m | |- .- = ( -g ` W ) |
||
| lmodsubdi.w | |- ( ph -> W e. LMod ) |
||
| lmodsubdi.a | |- ( ph -> A e. K ) |
||
| lmodsubdi.x | |- ( ph -> X e. V ) |
||
| lmodsubdi.y | |- ( ph -> Y e. V ) |
||
| Assertion | lmodsubdi | |- ( ph -> ( A .x. ( X .- Y ) ) = ( ( A .x. X ) .- ( A .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdi.v | |- V = ( Base ` W ) |
|
| 2 | lmodsubdi.t | |- .x. = ( .s ` W ) |
|
| 3 | lmodsubdi.f | |- F = ( Scalar ` W ) |
|
| 4 | lmodsubdi.k | |- K = ( Base ` F ) |
|
| 5 | lmodsubdi.m | |- .- = ( -g ` W ) |
|
| 6 | lmodsubdi.w | |- ( ph -> W e. LMod ) |
|
| 7 | lmodsubdi.a | |- ( ph -> A e. K ) |
|
| 8 | lmodsubdi.x | |- ( ph -> X e. V ) |
|
| 9 | lmodsubdi.y | |- ( ph -> Y e. V ) |
|
| 10 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 11 | eqid | |- ( invg ` F ) = ( invg ` F ) |
|
| 12 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 13 | 1 10 5 3 2 11 12 | lmodvsubval2 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) = ( X ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) |
| 14 | 6 8 9 13 | syl3anc | |- ( ph -> ( X .- Y ) = ( X ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) |
| 15 | 14 | oveq2d | |- ( ph -> ( A .x. ( X .- Y ) ) = ( A .x. ( X ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) ) |
| 16 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 17 | 3 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 18 | 6 17 | syl | |- ( ph -> F e. Ring ) |
| 19 | 4 16 12 11 18 7 | ringnegr | |- ( ph -> ( A ( .r ` F ) ( ( invg ` F ) ` ( 1r ` F ) ) ) = ( ( invg ` F ) ` A ) ) |
| 20 | 4 16 12 11 18 7 | ringnegl | |- ( ph -> ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) A ) = ( ( invg ` F ) ` A ) ) |
| 21 | 19 20 | eqtr4d | |- ( ph -> ( A ( .r ` F ) ( ( invg ` F ) ` ( 1r ` F ) ) ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) A ) ) |
| 22 | 21 | oveq1d | |- ( ph -> ( ( A ( .r ` F ) ( ( invg ` F ) ` ( 1r ` F ) ) ) .x. Y ) = ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) A ) .x. Y ) ) |
| 23 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 24 | 18 23 | syl | |- ( ph -> F e. Grp ) |
| 25 | 4 12 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 26 | 18 25 | syl | |- ( ph -> ( 1r ` F ) e. K ) |
| 27 | 4 11 | grpinvcl | |- ( ( F e. Grp /\ ( 1r ` F ) e. K ) -> ( ( invg ` F ) ` ( 1r ` F ) ) e. K ) |
| 28 | 24 26 27 | syl2anc | |- ( ph -> ( ( invg ` F ) ` ( 1r ` F ) ) e. K ) |
| 29 | 1 3 2 4 16 | lmodvsass | |- ( ( W e. LMod /\ ( A e. K /\ ( ( invg ` F ) ` ( 1r ` F ) ) e. K /\ Y e. V ) ) -> ( ( A ( .r ` F ) ( ( invg ` F ) ` ( 1r ` F ) ) ) .x. Y ) = ( A .x. ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) |
| 30 | 6 7 28 9 29 | syl13anc | |- ( ph -> ( ( A ( .r ` F ) ( ( invg ` F ) ` ( 1r ` F ) ) ) .x. Y ) = ( A .x. ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) |
| 31 | 1 3 2 4 16 | lmodvsass | |- ( ( W e. LMod /\ ( ( ( invg ` F ) ` ( 1r ` F ) ) e. K /\ A e. K /\ Y e. V ) ) -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) A ) .x. Y ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) |
| 32 | 6 28 7 9 31 | syl13anc | |- ( ph -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) A ) .x. Y ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) |
| 33 | 22 30 32 | 3eqtr3d | |- ( ph -> ( A .x. ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) |
| 34 | 33 | oveq2d | |- ( ph -> ( ( A .x. X ) ( +g ` W ) ( A .x. ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) ) |
| 35 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ ( ( invg ` F ) ` ( 1r ` F ) ) e. K /\ Y e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) e. V ) |
| 36 | 6 28 9 35 | syl3anc | |- ( ph -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) e. V ) |
| 37 | 1 10 3 2 4 | lmodvsdi | |- ( ( W e. LMod /\ ( A e. K /\ X e. V /\ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) e. V ) ) -> ( A .x. ( X ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) = ( ( A .x. X ) ( +g ` W ) ( A .x. ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) ) |
| 38 | 6 7 8 36 37 | syl13anc | |- ( ph -> ( A .x. ( X ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) = ( ( A .x. X ) ( +g ` W ) ( A .x. ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) ) |
| 39 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
| 40 | 6 7 8 39 | syl3anc | |- ( ph -> ( A .x. X ) e. V ) |
| 41 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ Y e. V ) -> ( A .x. Y ) e. V ) |
| 42 | 6 7 9 41 | syl3anc | |- ( ph -> ( A .x. Y ) e. V ) |
| 43 | 1 10 5 3 2 11 12 | lmodvsubval2 | |- ( ( W e. LMod /\ ( A .x. X ) e. V /\ ( A .x. Y ) e. V ) -> ( ( A .x. X ) .- ( A .x. Y ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) ) |
| 44 | 6 40 42 43 | syl3anc | |- ( ph -> ( ( A .x. X ) .- ( A .x. Y ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) ) |
| 45 | 34 38 44 | 3eqtr4rd | |- ( ph -> ( ( A .x. X ) .- ( A .x. Y ) ) = ( A .x. ( X ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. Y ) ) ) ) |
| 46 | 15 45 | eqtr4d | |- ( ph -> ( A .x. ( X .- Y ) ) = ( ( A .x. X ) .- ( A .x. Y ) ) ) |