This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector subtraction in terms of addition. ( hvsubval analog.) (Contributed by NM, 31-Mar-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsubval2.v | |- V = ( Base ` W ) |
|
| lmodvsubval2.p | |- .+ = ( +g ` W ) |
||
| lmodvsubval2.m | |- .- = ( -g ` W ) |
||
| lmodvsubval2.f | |- F = ( Scalar ` W ) |
||
| lmodvsubval2.s | |- .x. = ( .s ` W ) |
||
| lmodvsubval2.n | |- N = ( invg ` F ) |
||
| lmodvsubval2.u | |- .1. = ( 1r ` F ) |
||
| Assertion | lmodvsubval2 | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( N ` .1. ) .x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsubval2.v | |- V = ( Base ` W ) |
|
| 2 | lmodvsubval2.p | |- .+ = ( +g ` W ) |
|
| 3 | lmodvsubval2.m | |- .- = ( -g ` W ) |
|
| 4 | lmodvsubval2.f | |- F = ( Scalar ` W ) |
|
| 5 | lmodvsubval2.s | |- .x. = ( .s ` W ) |
|
| 6 | lmodvsubval2.n | |- N = ( invg ` F ) |
|
| 7 | lmodvsubval2.u | |- .1. = ( 1r ` F ) |
|
| 8 | eqid | |- ( invg ` W ) = ( invg ` W ) |
|
| 9 | 1 2 8 3 | grpsubval | |- ( ( A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
| 10 | 9 | 3adant1 | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
| 11 | 1 8 4 5 7 6 | lmodvneg1 | |- ( ( W e. LMod /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) |
| 12 | 11 | 3adant2 | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) |
| 13 | 12 | oveq2d | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ ( ( N ` .1. ) .x. B ) ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
| 14 | 10 13 | eqtr4d | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( N ` .1. ) .x. B ) ) ) |