This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. ( hvsubdistr2 analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubdir.v | |- V = ( Base ` W ) |
|
| lmodsubdir.t | |- .x. = ( .s ` W ) |
||
| lmodsubdir.f | |- F = ( Scalar ` W ) |
||
| lmodsubdir.k | |- K = ( Base ` F ) |
||
| lmodsubdir.m | |- .- = ( -g ` W ) |
||
| lmodsubdir.s | |- S = ( -g ` F ) |
||
| lmodsubdir.w | |- ( ph -> W e. LMod ) |
||
| lmodsubdir.a | |- ( ph -> A e. K ) |
||
| lmodsubdir.b | |- ( ph -> B e. K ) |
||
| lmodsubdir.x | |- ( ph -> X e. V ) |
||
| Assertion | lmodsubdir | |- ( ph -> ( ( A S B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdir.v | |- V = ( Base ` W ) |
|
| 2 | lmodsubdir.t | |- .x. = ( .s ` W ) |
|
| 3 | lmodsubdir.f | |- F = ( Scalar ` W ) |
|
| 4 | lmodsubdir.k | |- K = ( Base ` F ) |
|
| 5 | lmodsubdir.m | |- .- = ( -g ` W ) |
|
| 6 | lmodsubdir.s | |- S = ( -g ` F ) |
|
| 7 | lmodsubdir.w | |- ( ph -> W e. LMod ) |
|
| 8 | lmodsubdir.a | |- ( ph -> A e. K ) |
|
| 9 | lmodsubdir.b | |- ( ph -> B e. K ) |
|
| 10 | lmodsubdir.x | |- ( ph -> X e. V ) |
|
| 11 | 3 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 12 | 7 11 | syl | |- ( ph -> F e. Ring ) |
| 13 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 14 | 12 13 | syl | |- ( ph -> F e. Grp ) |
| 15 | eqid | |- ( invg ` F ) = ( invg ` F ) |
|
| 16 | 4 15 | grpinvcl | |- ( ( F e. Grp /\ B e. K ) -> ( ( invg ` F ) ` B ) e. K ) |
| 17 | 14 9 16 | syl2anc | |- ( ph -> ( ( invg ` F ) ` B ) e. K ) |
| 18 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 19 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 20 | 1 18 3 2 4 19 | lmodvsdir | |- ( ( W e. LMod /\ ( A e. K /\ ( ( invg ` F ) ` B ) e. K /\ X e. V ) ) -> ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` B ) .x. X ) ) ) |
| 21 | 7 8 17 10 20 | syl13anc | |- ( ph -> ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` B ) .x. X ) ) ) |
| 22 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 23 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 24 | 4 22 23 15 12 9 | ringnegl | |- ( ph -> ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) = ( ( invg ` F ) ` B ) ) |
| 25 | 24 | oveq1d | |- ( ph -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) .x. X ) = ( ( ( invg ` F ) ` B ) .x. X ) ) |
| 26 | 4 23 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 27 | 12 26 | syl | |- ( ph -> ( 1r ` F ) e. K ) |
| 28 | 4 15 | grpinvcl | |- ( ( F e. Grp /\ ( 1r ` F ) e. K ) -> ( ( invg ` F ) ` ( 1r ` F ) ) e. K ) |
| 29 | 14 27 28 | syl2anc | |- ( ph -> ( ( invg ` F ) ` ( 1r ` F ) ) e. K ) |
| 30 | 1 3 2 4 22 | lmodvsass | |- ( ( W e. LMod /\ ( ( ( invg ` F ) ` ( 1r ` F ) ) e. K /\ B e. K /\ X e. V ) ) -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) |
| 31 | 7 29 9 10 30 | syl13anc | |- ( ph -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) |
| 32 | 25 31 | eqtr3d | |- ( ph -> ( ( ( invg ` F ) ` B ) .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) |
| 33 | 32 | oveq2d | |- ( ph -> ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` B ) .x. X ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
| 34 | 21 33 | eqtrd | |- ( ph -> ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
| 35 | 4 19 15 6 | grpsubval | |- ( ( A e. K /\ B e. K ) -> ( A S B ) = ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) ) |
| 36 | 8 9 35 | syl2anc | |- ( ph -> ( A S B ) = ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) ) |
| 37 | 36 | oveq1d | |- ( ph -> ( ( A S B ) .x. X ) = ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) ) |
| 38 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
| 39 | 7 8 10 38 | syl3anc | |- ( ph -> ( A .x. X ) e. V ) |
| 40 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ B e. K /\ X e. V ) -> ( B .x. X ) e. V ) |
| 41 | 7 9 10 40 | syl3anc | |- ( ph -> ( B .x. X ) e. V ) |
| 42 | 1 18 5 3 2 15 23 | lmodvsubval2 | |- ( ( W e. LMod /\ ( A .x. X ) e. V /\ ( B .x. X ) e. V ) -> ( ( A .x. X ) .- ( B .x. X ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
| 43 | 7 39 41 42 | syl3anc | |- ( ph -> ( ( A .x. X ) .- ( B .x. X ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
| 44 | 34 37 43 | 3eqtr4d | |- ( ph -> ( ( A S B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |