This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubdistr1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B -h C ) ) = ( ( A .h B ) -h ( A .h C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | |- -u 1 e. CC |
|
| 2 | hvmulcl | |- ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H ) |
|
| 3 | 1 2 | mpan | |- ( C e. ~H -> ( -u 1 .h C ) e. ~H ) |
| 4 | ax-hvdistr1 | |- ( ( A e. CC /\ B e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( A .h ( B +h ( -u 1 .h C ) ) ) = ( ( A .h B ) +h ( A .h ( -u 1 .h C ) ) ) ) |
|
| 5 | 3 4 | syl3an3 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B +h ( -u 1 .h C ) ) ) = ( ( A .h B ) +h ( A .h ( -u 1 .h C ) ) ) ) |
| 6 | hvmulcom | |- ( ( A e. CC /\ -u 1 e. CC /\ C e. ~H ) -> ( A .h ( -u 1 .h C ) ) = ( -u 1 .h ( A .h C ) ) ) |
|
| 7 | 1 6 | mp3an2 | |- ( ( A e. CC /\ C e. ~H ) -> ( A .h ( -u 1 .h C ) ) = ( -u 1 .h ( A .h C ) ) ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ C e. ~H ) -> ( ( A .h B ) +h ( A .h ( -u 1 .h C ) ) ) = ( ( A .h B ) +h ( -u 1 .h ( A .h C ) ) ) ) |
| 9 | 8 | 3adant2 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) +h ( A .h ( -u 1 .h C ) ) ) = ( ( A .h B ) +h ( -u 1 .h ( A .h C ) ) ) ) |
| 10 | 5 9 | eqtrd | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B +h ( -u 1 .h C ) ) ) = ( ( A .h B ) +h ( -u 1 .h ( A .h C ) ) ) ) |
| 11 | hvsubval | |- ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) |
|
| 12 | 11 | 3adant1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) |
| 13 | 12 | oveq2d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B -h C ) ) = ( A .h ( B +h ( -u 1 .h C ) ) ) ) |
| 14 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 15 | 14 | 3adant3 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h B ) e. ~H ) |
| 16 | hvmulcl | |- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
|
| 17 | 16 | 3adant2 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
| 18 | hvsubval | |- ( ( ( A .h B ) e. ~H /\ ( A .h C ) e. ~H ) -> ( ( A .h B ) -h ( A .h C ) ) = ( ( A .h B ) +h ( -u 1 .h ( A .h C ) ) ) ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) -h ( A .h C ) ) = ( ( A .h B ) +h ( -u 1 .h ( A .h C ) ) ) ) |
| 20 | 10 13 19 | 3eqtr4d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B -h C ) ) = ( ( A .h B ) -h ( A .h C ) ) ) |