This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. ( hvsubdistr1 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodsubdi.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodsubdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodsubdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodsubdi.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| lmodsubdi.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lmodsubdi.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lmodsubdi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lmodsubdi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lmodsubdi | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 − 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodsubdi.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lmodsubdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lmodsubdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lmodsubdi.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 6 | lmodsubdi.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 7 | lmodsubdi.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 8 | lmodsubdi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | lmodsubdi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) | |
| 12 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 13 | 1 10 5 3 2 11 12 | lmodvsubval2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 14 | 6 8 9 13 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 − 𝑌 ) ) = ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 16 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 17 | 3 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 18 | 6 17 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 19 | 4 16 12 11 18 7 | ringnegr | ⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) = ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 20 | 4 16 12 11 18 7 | ringnegl | ⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) = ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 21 | 19 20 | eqtr4d | ⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
| 22 | 21 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) · 𝑌 ) = ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) ) |
| 23 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 24 | 18 23 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 25 | 4 12 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 26 | 18 25 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 27 | 4 11 | grpinvcl | ⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 28 | 24 26 27 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 29 | 1 3 2 4 16 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) · 𝑌 ) = ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 30 | 6 7 28 9 29 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) · 𝑌 ) = ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 31 | 1 3 2 4 16 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 32 | 6 28 7 9 31 | syl13anc | ⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 33 | 22 30 32 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 34 | 33 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 35 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ∈ 𝑉 ) |
| 36 | 6 28 9 35 | syl3anc | ⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ∈ 𝑉 ) |
| 37 | 1 10 3 2 4 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 38 | 6 7 8 36 37 | syl13anc | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 39 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 40 | 6 7 8 39 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 41 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 42 | 6 7 9 41 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 43 | 1 10 5 3 2 11 12 | lmodvsubval2 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 44 | 6 40 42 43 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 45 | 34 38 44 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 46 | 15 45 | eqtr4d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 − 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) ) |