This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1open.1 | |- X = U. J |
|
| Assertion | rintopn | |- ( ( J e. Top /\ A C_ J /\ A e. Fin ) -> ( X i^i |^| A ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | |- X = U. J |
|
| 2 | intiin | |- |^| A = |^|_ x e. A x |
|
| 3 | 2 | ineq2i | |- ( X i^i |^| A ) = ( X i^i |^|_ x e. A x ) |
| 4 | dfss3 | |- ( A C_ J <-> A. x e. A x e. J ) |
|
| 5 | 1 | riinopn | |- ( ( J e. Top /\ A e. Fin /\ A. x e. A x e. J ) -> ( X i^i |^|_ x e. A x ) e. J ) |
| 6 | 5 | 3com23 | |- ( ( J e. Top /\ A. x e. A x e. J /\ A e. Fin ) -> ( X i^i |^|_ x e. A x ) e. J ) |
| 7 | 4 6 | syl3an2b | |- ( ( J e. Top /\ A C_ J /\ A e. Fin ) -> ( X i^i |^|_ x e. A x ) e. J ) |
| 8 | 3 7 | eqeltrid | |- ( ( J e. Top /\ A C_ J /\ A e. Fin ) -> ( X i^i |^| A ) e. J ) |