This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leordtval.1 | |- A = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| leordtval.2 | |- B = ran ( x e. RR* |-> ( -oo [,) x ) ) |
||
| Assertion | leordtval2 | |- ( ordTop ` <_ ) = ( topGen ` ( fi ` ( A u. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | |- A = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 2 | leordtval.2 | |- B = ran ( x e. RR* |-> ( -oo [,) x ) ) |
|
| 3 | letsr | |- <_ e. TosetRel |
|
| 4 | ledm | |- RR* = dom <_ |
|
| 5 | 1 | leordtvallem1 | |- A = ran ( x e. RR* |-> { y e. RR* | -. y <_ x } ) |
| 6 | 1 2 | leordtvallem2 | |- B = ran ( x e. RR* |-> { y e. RR* | -. x <_ y } ) |
| 7 | 4 5 6 | ordtval | |- ( <_ e. TosetRel -> ( ordTop ` <_ ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) ) |
| 8 | 3 7 | ax-mp | |- ( ordTop ` <_ ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) |
| 9 | snex | |- { RR* } e. _V |
|
| 10 | xrex | |- RR* e. _V |
|
| 11 | 10 | pwex | |- ~P RR* e. _V |
| 12 | eqid | |- ( x e. RR* |-> ( x (,] +oo ) ) = ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 13 | iocssxr | |- ( x (,] +oo ) C_ RR* |
|
| 14 | 10 13 | elpwi2 | |- ( x (,] +oo ) e. ~P RR* |
| 15 | 14 | a1i | |- ( x e. RR* -> ( x (,] +oo ) e. ~P RR* ) |
| 16 | 12 15 | fmpti | |- ( x e. RR* |-> ( x (,] +oo ) ) : RR* --> ~P RR* |
| 17 | frn | |- ( ( x e. RR* |-> ( x (,] +oo ) ) : RR* --> ~P RR* -> ran ( x e. RR* |-> ( x (,] +oo ) ) C_ ~P RR* ) |
|
| 18 | 16 17 | ax-mp | |- ran ( x e. RR* |-> ( x (,] +oo ) ) C_ ~P RR* |
| 19 | 1 18 | eqsstri | |- A C_ ~P RR* |
| 20 | eqid | |- ( x e. RR* |-> ( -oo [,) x ) ) = ( x e. RR* |-> ( -oo [,) x ) ) |
|
| 21 | icossxr | |- ( -oo [,) x ) C_ RR* |
|
| 22 | 10 21 | elpwi2 | |- ( -oo [,) x ) e. ~P RR* |
| 23 | 22 | a1i | |- ( x e. RR* -> ( -oo [,) x ) e. ~P RR* ) |
| 24 | 20 23 | fmpti | |- ( x e. RR* |-> ( -oo [,) x ) ) : RR* --> ~P RR* |
| 25 | frn | |- ( ( x e. RR* |-> ( -oo [,) x ) ) : RR* --> ~P RR* -> ran ( x e. RR* |-> ( -oo [,) x ) ) C_ ~P RR* ) |
|
| 26 | 24 25 | ax-mp | |- ran ( x e. RR* |-> ( -oo [,) x ) ) C_ ~P RR* |
| 27 | 2 26 | eqsstri | |- B C_ ~P RR* |
| 28 | 19 27 | unssi | |- ( A u. B ) C_ ~P RR* |
| 29 | 11 28 | ssexi | |- ( A u. B ) e. _V |
| 30 | 9 29 | unex | |- ( { RR* } u. ( A u. B ) ) e. _V |
| 31 | ssun2 | |- ( A u. B ) C_ ( { RR* } u. ( A u. B ) ) |
|
| 32 | fiss | |- ( ( ( { RR* } u. ( A u. B ) ) e. _V /\ ( A u. B ) C_ ( { RR* } u. ( A u. B ) ) ) -> ( fi ` ( A u. B ) ) C_ ( fi ` ( { RR* } u. ( A u. B ) ) ) ) |
|
| 33 | 30 31 32 | mp2an | |- ( fi ` ( A u. B ) ) C_ ( fi ` ( { RR* } u. ( A u. B ) ) ) |
| 34 | fvex | |- ( topGen ` ( fi ` ( A u. B ) ) ) e. _V |
|
| 35 | ovex | |- ( 0 (,] +oo ) e. _V |
|
| 36 | ovex | |- ( -oo [,) 1 ) e. _V |
|
| 37 | 35 36 | unipr | |- U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } = ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) |
| 38 | iocssxr | |- ( 0 (,] +oo ) C_ RR* |
|
| 39 | icossxr | |- ( -oo [,) 1 ) C_ RR* |
|
| 40 | 38 39 | unssi | |- ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) C_ RR* |
| 41 | mnfxr | |- -oo e. RR* |
|
| 42 | 0xr | |- 0 e. RR* |
|
| 43 | pnfxr | |- +oo e. RR* |
|
| 44 | mnflt0 | |- -oo < 0 |
|
| 45 | 0lepnf | |- 0 <_ +oo |
|
| 46 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 47 | df-ioc | |- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
|
| 48 | xrltnle | |- ( ( 0 e. RR* /\ w e. RR* ) -> ( 0 < w <-> -. w <_ 0 ) ) |
|
| 49 | xrletr | |- ( ( w e. RR* /\ 0 e. RR* /\ +oo e. RR* ) -> ( ( w <_ 0 /\ 0 <_ +oo ) -> w <_ +oo ) ) |
|
| 50 | xrlttr | |- ( ( -oo e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( ( -oo < 0 /\ 0 < w ) -> -oo < w ) ) |
|
| 51 | xrltle | |- ( ( -oo e. RR* /\ w e. RR* ) -> ( -oo < w -> -oo <_ w ) ) |
|
| 52 | 51 | 3adant2 | |- ( ( -oo e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( -oo < w -> -oo <_ w ) ) |
| 53 | 50 52 | syld | |- ( ( -oo e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( ( -oo < 0 /\ 0 < w ) -> -oo <_ w ) ) |
| 54 | 46 47 48 46 49 53 | ixxun | |- ( ( ( -oo e. RR* /\ 0 e. RR* /\ +oo e. RR* ) /\ ( -oo < 0 /\ 0 <_ +oo ) ) -> ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) = ( -oo [,] +oo ) ) |
| 55 | 44 45 54 | mpanr12 | |- ( ( -oo e. RR* /\ 0 e. RR* /\ +oo e. RR* ) -> ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) = ( -oo [,] +oo ) ) |
| 56 | 41 42 43 55 | mp3an | |- ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) = ( -oo [,] +oo ) |
| 57 | 1xr | |- 1 e. RR* |
|
| 58 | 0lt1 | |- 0 < 1 |
|
| 59 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 60 | xrlelttr | |- ( ( w e. RR* /\ 0 e. RR* /\ 1 e. RR* ) -> ( ( w <_ 0 /\ 0 < 1 ) -> w < 1 ) ) |
|
| 61 | 59 46 60 | ixxss2 | |- ( ( 1 e. RR* /\ 0 < 1 ) -> ( -oo [,] 0 ) C_ ( -oo [,) 1 ) ) |
| 62 | 57 58 61 | mp2an | |- ( -oo [,] 0 ) C_ ( -oo [,) 1 ) |
| 63 | unss1 | |- ( ( -oo [,] 0 ) C_ ( -oo [,) 1 ) -> ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) C_ ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) ) |
|
| 64 | 62 63 | ax-mp | |- ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) C_ ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) |
| 65 | 56 64 | eqsstrri | |- ( -oo [,] +oo ) C_ ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) |
| 66 | iccmax | |- ( -oo [,] +oo ) = RR* |
|
| 67 | uncom | |- ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) = ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) |
|
| 68 | 65 66 67 | 3sstr3i | |- RR* C_ ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) |
| 69 | 40 68 | eqssi | |- ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) = RR* |
| 70 | 37 69 | eqtri | |- U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } = RR* |
| 71 | fvex | |- ( fi ` ( A u. B ) ) e. _V |
|
| 72 | ssun1 | |- A C_ ( A u. B ) |
|
| 73 | eqid | |- ( 0 (,] +oo ) = ( 0 (,] +oo ) |
|
| 74 | oveq1 | |- ( x = 0 -> ( x (,] +oo ) = ( 0 (,] +oo ) ) |
|
| 75 | 74 | rspceeqv | |- ( ( 0 e. RR* /\ ( 0 (,] +oo ) = ( 0 (,] +oo ) ) -> E. x e. RR* ( 0 (,] +oo ) = ( x (,] +oo ) ) |
| 76 | 42 73 75 | mp2an | |- E. x e. RR* ( 0 (,] +oo ) = ( x (,] +oo ) |
| 77 | ovex | |- ( x (,] +oo ) e. _V |
|
| 78 | 12 77 | elrnmpti | |- ( ( 0 (,] +oo ) e. ran ( x e. RR* |-> ( x (,] +oo ) ) <-> E. x e. RR* ( 0 (,] +oo ) = ( x (,] +oo ) ) |
| 79 | 76 78 | mpbir | |- ( 0 (,] +oo ) e. ran ( x e. RR* |-> ( x (,] +oo ) ) |
| 80 | 79 1 | eleqtrri | |- ( 0 (,] +oo ) e. A |
| 81 | 72 80 | sselii | |- ( 0 (,] +oo ) e. ( A u. B ) |
| 82 | ssun2 | |- B C_ ( A u. B ) |
|
| 83 | eqid | |- ( -oo [,) 1 ) = ( -oo [,) 1 ) |
|
| 84 | oveq2 | |- ( x = 1 -> ( -oo [,) x ) = ( -oo [,) 1 ) ) |
|
| 85 | 84 | rspceeqv | |- ( ( 1 e. RR* /\ ( -oo [,) 1 ) = ( -oo [,) 1 ) ) -> E. x e. RR* ( -oo [,) 1 ) = ( -oo [,) x ) ) |
| 86 | 57 83 85 | mp2an | |- E. x e. RR* ( -oo [,) 1 ) = ( -oo [,) x ) |
| 87 | ovex | |- ( -oo [,) x ) e. _V |
|
| 88 | 20 87 | elrnmpti | |- ( ( -oo [,) 1 ) e. ran ( x e. RR* |-> ( -oo [,) x ) ) <-> E. x e. RR* ( -oo [,) 1 ) = ( -oo [,) x ) ) |
| 89 | 86 88 | mpbir | |- ( -oo [,) 1 ) e. ran ( x e. RR* |-> ( -oo [,) x ) ) |
| 90 | 89 2 | eleqtrri | |- ( -oo [,) 1 ) e. B |
| 91 | 82 90 | sselii | |- ( -oo [,) 1 ) e. ( A u. B ) |
| 92 | prssi | |- ( ( ( 0 (,] +oo ) e. ( A u. B ) /\ ( -oo [,) 1 ) e. ( A u. B ) ) -> { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( A u. B ) ) |
|
| 93 | 81 91 92 | mp2an | |- { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( A u. B ) |
| 94 | ssfii | |- ( ( A u. B ) e. _V -> ( A u. B ) C_ ( fi ` ( A u. B ) ) ) |
|
| 95 | 29 94 | ax-mp | |- ( A u. B ) C_ ( fi ` ( A u. B ) ) |
| 96 | 93 95 | sstri | |- { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( fi ` ( A u. B ) ) |
| 97 | eltg3i | |- ( ( ( fi ` ( A u. B ) ) e. _V /\ { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( fi ` ( A u. B ) ) ) -> U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } e. ( topGen ` ( fi ` ( A u. B ) ) ) ) |
|
| 98 | 71 96 97 | mp2an | |- U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } e. ( topGen ` ( fi ` ( A u. B ) ) ) |
| 99 | 70 98 | eqeltrri | |- RR* e. ( topGen ` ( fi ` ( A u. B ) ) ) |
| 100 | snssi | |- ( RR* e. ( topGen ` ( fi ` ( A u. B ) ) ) -> { RR* } C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) |
|
| 101 | 99 100 | ax-mp | |- { RR* } C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
| 102 | bastg | |- ( ( fi ` ( A u. B ) ) e. _V -> ( fi ` ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) |
|
| 103 | 71 102 | ax-mp | |- ( fi ` ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
| 104 | 95 103 | sstri | |- ( A u. B ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
| 105 | 101 104 | unssi | |- ( { RR* } u. ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
| 106 | fiss | |- ( ( ( topGen ` ( fi ` ( A u. B ) ) ) e. _V /\ ( { RR* } u. ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) -> ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) ) |
|
| 107 | 34 105 106 | mp2an | |- ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) |
| 108 | fibas | |- ( fi ` ( A u. B ) ) e. TopBases |
|
| 109 | tgcl | |- ( ( fi ` ( A u. B ) ) e. TopBases -> ( topGen ` ( fi ` ( A u. B ) ) ) e. Top ) |
|
| 110 | fitop | |- ( ( topGen ` ( fi ` ( A u. B ) ) ) e. Top -> ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) = ( topGen ` ( fi ` ( A u. B ) ) ) ) |
|
| 111 | 108 109 110 | mp2b | |- ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) = ( topGen ` ( fi ` ( A u. B ) ) ) |
| 112 | 107 111 | sseqtri | |- ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
| 113 | 2basgen | |- ( ( ( fi ` ( A u. B ) ) C_ ( fi ` ( { RR* } u. ( A u. B ) ) ) /\ ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) -> ( topGen ` ( fi ` ( A u. B ) ) ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) ) |
|
| 114 | 33 112 113 | mp2an | |- ( topGen ` ( fi ` ( A u. B ) ) ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) |
| 115 | 8 114 | eqtr4i | |- ( ordTop ` <_ ) = ( topGen ` ( fi ` ( A u. B ) ) ) |