This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccordt | |- ( A [,] B ) e. ( Clsd ` ( ordTop ` <_ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | |- ( A [,] B ) = ( [,] ` <. A , B >. ) |
|
| 2 | letsr | |- <_ e. TosetRel |
|
| 3 | ledm | |- RR* = dom <_ |
|
| 4 | 3 | ordtcld3 | |- ( ( <_ e. TosetRel /\ x e. RR* /\ y e. RR* ) -> { z e. RR* | ( x <_ z /\ z <_ y ) } e. ( Clsd ` ( ordTop ` <_ ) ) ) |
| 5 | 2 4 | mp3an1 | |- ( ( x e. RR* /\ y e. RR* ) -> { z e. RR* | ( x <_ z /\ z <_ y ) } e. ( Clsd ` ( ordTop ` <_ ) ) ) |
| 6 | 5 | rgen2 | |- A. x e. RR* A. y e. RR* { z e. RR* | ( x <_ z /\ z <_ y ) } e. ( Clsd ` ( ordTop ` <_ ) ) |
| 7 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 8 | 7 | fmpo | |- ( A. x e. RR* A. y e. RR* { z e. RR* | ( x <_ z /\ z <_ y ) } e. ( Clsd ` ( ordTop ` <_ ) ) <-> [,] : ( RR* X. RR* ) --> ( Clsd ` ( ordTop ` <_ ) ) ) |
| 9 | 6 8 | mpbi | |- [,] : ( RR* X. RR* ) --> ( Clsd ` ( ordTop ` <_ ) ) |
| 10 | letop | |- ( ordTop ` <_ ) e. Top |
|
| 11 | 0cld | |- ( ( ordTop ` <_ ) e. Top -> (/) e. ( Clsd ` ( ordTop ` <_ ) ) ) |
|
| 12 | 10 11 | ax-mp | |- (/) e. ( Clsd ` ( ordTop ` <_ ) ) |
| 13 | 9 12 | f0cli | |- ( [,] ` <. A , B >. ) e. ( Clsd ` ( ordTop ` <_ ) ) |
| 14 | 1 13 | eqeltri | |- ( A [,] B ) e. ( Clsd ` ( ordTop ` <_ ) ) |