This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccmax | |- ( -oo [,] +oo ) = RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | |- -oo e. RR* |
|
| 2 | pnfxr | |- +oo e. RR* |
|
| 3 | iccval | |- ( ( -oo e. RR* /\ +oo e. RR* ) -> ( -oo [,] +oo ) = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } ) |
|
| 4 | 1 2 3 | mp2an | |- ( -oo [,] +oo ) = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } |
| 5 | rabid2 | |- ( RR* = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } <-> A. x e. RR* ( -oo <_ x /\ x <_ +oo ) ) |
|
| 6 | mnfle | |- ( x e. RR* -> -oo <_ x ) |
|
| 7 | pnfge | |- ( x e. RR* -> x <_ +oo ) |
|
| 8 | 6 7 | jca | |- ( x e. RR* -> ( -oo <_ x /\ x <_ +oo ) ) |
| 9 | 5 8 | mprgbir | |- RR* = { x e. RR* | ( -oo <_ x /\ x <_ +oo ) } |
| 10 | 4 9 | eqtr4i | |- ( -oo [,] +oo ) = RR* |