This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdid | |- ( N e. ZZ -> ( N gcd N ) = ( abs ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | 0z | |- 0 e. ZZ |
|
| 3 | gcdaddm | |- ( ( 1 e. ZZ /\ N e. ZZ /\ 0 e. ZZ ) -> ( N gcd 0 ) = ( N gcd ( 0 + ( 1 x. N ) ) ) ) |
|
| 4 | 1 2 3 | mp3an13 | |- ( N e. ZZ -> ( N gcd 0 ) = ( N gcd ( 0 + ( 1 x. N ) ) ) ) |
| 5 | gcdid0 | |- ( N e. ZZ -> ( N gcd 0 ) = ( abs ` N ) ) |
|
| 6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 7 | mullid | |- ( N e. CC -> ( 1 x. N ) = N ) |
|
| 8 | 7 | oveq2d | |- ( N e. CC -> ( 0 + ( 1 x. N ) ) = ( 0 + N ) ) |
| 9 | addlid | |- ( N e. CC -> ( 0 + N ) = N ) |
|
| 10 | 8 9 | eqtrd | |- ( N e. CC -> ( 0 + ( 1 x. N ) ) = N ) |
| 11 | 6 10 | syl | |- ( N e. ZZ -> ( 0 + ( 1 x. N ) ) = N ) |
| 12 | 11 | oveq2d | |- ( N e. ZZ -> ( N gcd ( 0 + ( 1 x. N ) ) ) = ( N gcd N ) ) |
| 13 | 4 5 12 | 3eqtr3rd | |- ( N e. ZZ -> ( N gcd N ) = ( abs ` N ) ) |