This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmabs | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 2 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 3 | absor | |- ( M e. RR -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) |
|
| 4 | absor | |- ( N e. RR -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
|
| 5 | 3 4 | anim12i | |- ( ( M e. RR /\ N e. RR ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) |
| 6 | 1 2 5 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) |
| 7 | oveq12 | |- ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
|
| 8 | 7 | a1i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 9 | oveq12 | |- ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( -u M lcm N ) ) |
|
| 10 | neglcm | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( M lcm N ) ) |
|
| 11 | 9 10 | sylan9eqr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 12 | 11 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 13 | oveq12 | |- ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm -u N ) ) |
|
| 14 | lcmneg | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) |
|
| 15 | 13 14 | sylan9eqr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 16 | 15 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 17 | oveq12 | |- ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( -u M lcm -u N ) ) |
|
| 18 | znegcl | |- ( M e. ZZ -> -u M e. ZZ ) |
|
| 19 | lcmneg | |- ( ( -u M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( -u M lcm N ) ) |
|
| 20 | 18 19 | sylan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( -u M lcm N ) ) |
| 21 | 20 10 | eqtrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( M lcm N ) ) |
| 22 | 17 21 | sylan9eqr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 23 | 22 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 24 | 8 12 16 23 | ccased | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 25 | 6 24 | mpd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |