This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of lcmdvds . (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmdvdsb | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) <-> ( M lcm N ) || K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmdvds | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
|
| 2 | dvdslcm | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
|
| 3 | 2 | simpld | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) |
| 4 | 3 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) |
| 5 | simp2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 6 | lcmcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
|
| 7 | 6 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
| 8 | 7 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
| 9 | simp1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
|
| 10 | dvdstr | |- ( ( M e. ZZ /\ ( M lcm N ) e. ZZ /\ K e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || K ) -> M || K ) ) |
|
| 11 | 5 8 9 10 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || K ) -> M || K ) ) |
| 12 | 4 11 | mpand | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) || K -> M || K ) ) |
| 13 | 2 | simprd | |- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M lcm N ) ) |
| 14 | 13 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> N || ( M lcm N ) ) |
| 15 | dvdstr | |- ( ( N e. ZZ /\ ( M lcm N ) e. ZZ /\ K e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || K ) -> N || K ) ) |
|
| 16 | 15 | 3com13 | |- ( ( K e. ZZ /\ ( M lcm N ) e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || K ) -> N || K ) ) |
| 17 | 8 16 | syld3an2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || K ) -> N || K ) ) |
| 18 | 14 17 | mpand | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) || K -> N || K ) ) |
| 19 | 12 18 | jcad | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) || K -> ( M || K /\ N || K ) ) ) |
| 20 | 1 19 | impbid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) <-> ( M lcm N ) || K ) ) |