This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmid | |- ( M e. ZZ -> ( M lcm M ) = ( abs ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( M = 0 -> ( M lcm M ) = ( M lcm 0 ) ) |
|
| 2 | fveq2 | |- ( M = 0 -> ( abs ` M ) = ( abs ` 0 ) ) |
|
| 3 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 4 | 2 3 | eqtrdi | |- ( M = 0 -> ( abs ` M ) = 0 ) |
| 5 | 1 4 | eqeq12d | |- ( M = 0 -> ( ( M lcm M ) = ( abs ` M ) <-> ( M lcm 0 ) = 0 ) ) |
| 6 | lcmcl | |- ( ( M e. ZZ /\ M e. ZZ ) -> ( M lcm M ) e. NN0 ) |
|
| 7 | 6 | nn0cnd | |- ( ( M e. ZZ /\ M e. ZZ ) -> ( M lcm M ) e. CC ) |
| 8 | 7 | anidms | |- ( M e. ZZ -> ( M lcm M ) e. CC ) |
| 9 | 8 | adantr | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( M lcm M ) e. CC ) |
| 10 | zabscl | |- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
|
| 11 | 10 | zcnd | |- ( M e. ZZ -> ( abs ` M ) e. CC ) |
| 12 | 11 | adantr | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. CC ) |
| 13 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 14 | 13 | adantr | |- ( ( M e. ZZ /\ M =/= 0 ) -> M e. CC ) |
| 15 | simpr | |- ( ( M e. ZZ /\ M =/= 0 ) -> M =/= 0 ) |
|
| 16 | 14 15 | absne0d | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) =/= 0 ) |
| 17 | lcmgcd | |- ( ( M e. ZZ /\ M e. ZZ ) -> ( ( M lcm M ) x. ( M gcd M ) ) = ( abs ` ( M x. M ) ) ) |
|
| 18 | 17 | anidms | |- ( M e. ZZ -> ( ( M lcm M ) x. ( M gcd M ) ) = ( abs ` ( M x. M ) ) ) |
| 19 | gcdid | |- ( M e. ZZ -> ( M gcd M ) = ( abs ` M ) ) |
|
| 20 | 19 | oveq2d | |- ( M e. ZZ -> ( ( M lcm M ) x. ( M gcd M ) ) = ( ( M lcm M ) x. ( abs ` M ) ) ) |
| 21 | 13 13 | absmuld | |- ( M e. ZZ -> ( abs ` ( M x. M ) ) = ( ( abs ` M ) x. ( abs ` M ) ) ) |
| 22 | 18 20 21 | 3eqtr3d | |- ( M e. ZZ -> ( ( M lcm M ) x. ( abs ` M ) ) = ( ( abs ` M ) x. ( abs ` M ) ) ) |
| 23 | 22 | adantr | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( ( M lcm M ) x. ( abs ` M ) ) = ( ( abs ` M ) x. ( abs ` M ) ) ) |
| 24 | 9 12 12 16 23 | mulcan2ad | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( M lcm M ) = ( abs ` M ) ) |
| 25 | lcm0val | |- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
|
| 26 | 5 24 25 | pm2.61ne | |- ( M e. ZZ -> ( M lcm M ) = ( abs ` M ) ) |