This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of imain for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqdisj | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | imadmres | |- ( F " dom ( F |` ( A \ U ) ) ) = ( F " ( A \ U ) ) |
|
| 3 | dmres | |- dom ( F |` ( A \ U ) ) = ( ( A \ U ) i^i dom F ) |
|
| 4 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 5 | 4 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> F Fn X ) |
| 6 | 5 | fndmd | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> dom F = X ) |
| 7 | 6 | ineq2d | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( A \ U ) i^i dom F ) = ( ( A \ U ) i^i X ) ) |
| 8 | 3 7 | eqtrid | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> dom ( F |` ( A \ U ) ) = ( ( A \ U ) i^i X ) ) |
| 9 | 8 | imaeq2d | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " dom ( F |` ( A \ U ) ) ) = ( F " ( ( A \ U ) i^i X ) ) ) |
| 10 | 2 9 | eqtr3id | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " ( A \ U ) ) = ( F " ( ( A \ U ) i^i X ) ) ) |
| 11 | indif1 | |- ( ( A \ U ) i^i X ) = ( ( A i^i X ) \ U ) |
|
| 12 | inss2 | |- ( A i^i X ) C_ X |
|
| 13 | ssdif | |- ( ( A i^i X ) C_ X -> ( ( A i^i X ) \ U ) C_ ( X \ U ) ) |
|
| 14 | 12 13 | ax-mp | |- ( ( A i^i X ) \ U ) C_ ( X \ U ) |
| 15 | 11 14 | eqsstri | |- ( ( A \ U ) i^i X ) C_ ( X \ U ) |
| 16 | imass2 | |- ( ( ( A \ U ) i^i X ) C_ ( X \ U ) -> ( F " ( ( A \ U ) i^i X ) ) C_ ( F " ( X \ U ) ) ) |
|
| 17 | 15 16 | mp1i | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " ( ( A \ U ) i^i X ) ) C_ ( F " ( X \ U ) ) ) |
| 18 | 10 17 | eqsstrd | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " ( A \ U ) ) C_ ( F " ( X \ U ) ) ) |
| 19 | sslin | |- ( ( F " ( A \ U ) ) C_ ( F " ( X \ U ) ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) C_ ( ( F " U ) i^i ( F " ( X \ U ) ) ) ) |
|
| 20 | 18 19 | syl | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) C_ ( ( F " U ) i^i ( F " ( X \ U ) ) ) ) |
| 21 | eldifn | |- ( w e. ( X \ U ) -> -. w e. U ) |
|
| 22 | 21 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> -. w e. U ) |
| 23 | simpll | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> J e. ( TopOn ` X ) ) |
|
| 24 | simplr | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> U e. J ) |
|
| 25 | eldifi | |- ( w e. ( X \ U ) -> w e. X ) |
|
| 26 | 25 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> w e. X ) |
| 27 | 1 | kqfvima | |- ( ( J e. ( TopOn ` X ) /\ U e. J /\ w e. X ) -> ( w e. U <-> ( F ` w ) e. ( F " U ) ) ) |
| 28 | 23 24 26 27 | syl3anc | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> ( w e. U <-> ( F ` w ) e. ( F " U ) ) ) |
| 29 | 22 28 | mtbid | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> -. ( F ` w ) e. ( F " U ) ) |
| 30 | 29 | ralrimiva | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> A. w e. ( X \ U ) -. ( F ` w ) e. ( F " U ) ) |
| 31 | difss | |- ( X \ U ) C_ X |
|
| 32 | eleq1 | |- ( z = ( F ` w ) -> ( z e. ( F " U ) <-> ( F ` w ) e. ( F " U ) ) ) |
|
| 33 | 32 | notbid | |- ( z = ( F ` w ) -> ( -. z e. ( F " U ) <-> -. ( F ` w ) e. ( F " U ) ) ) |
| 34 | 33 | ralima | |- ( ( F Fn X /\ ( X \ U ) C_ X ) -> ( A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) <-> A. w e. ( X \ U ) -. ( F ` w ) e. ( F " U ) ) ) |
| 35 | 5 31 34 | sylancl | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) <-> A. w e. ( X \ U ) -. ( F ` w ) e. ( F " U ) ) ) |
| 36 | 30 35 | mpbird | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) ) |
| 37 | disjr | |- ( ( ( F " U ) i^i ( F " ( X \ U ) ) ) = (/) <-> A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) ) |
|
| 38 | 36 37 | sylibr | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) i^i ( F " ( X \ U ) ) ) = (/) ) |
| 39 | sseq0 | |- ( ( ( ( F " U ) i^i ( F " ( A \ U ) ) ) C_ ( ( F " U ) i^i ( F " ( X \ U ) ) ) /\ ( ( F " U ) i^i ( F " ( X \ U ) ) ) = (/) ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) = (/) ) |
|
| 40 | 20 38 39 | syl2anc | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) = (/) ) |