This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for intersection with a domain. Theorem 40 of Suppes p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dminss | |- ( dom R i^i A ) C_ ( `' R " ( R " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | |- ( ( x e. A /\ x R y ) -> E. x ( x e. A /\ x R y ) ) |
|
| 2 | 1 | ancoms | |- ( ( x R y /\ x e. A ) -> E. x ( x e. A /\ x R y ) ) |
| 3 | vex | |- y e. _V |
|
| 4 | 3 | elima2 | |- ( y e. ( R " A ) <-> E. x ( x e. A /\ x R y ) ) |
| 5 | 2 4 | sylibr | |- ( ( x R y /\ x e. A ) -> y e. ( R " A ) ) |
| 6 | simpl | |- ( ( x R y /\ x e. A ) -> x R y ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | 3 7 | brcnv | |- ( y `' R x <-> x R y ) |
| 9 | 6 8 | sylibr | |- ( ( x R y /\ x e. A ) -> y `' R x ) |
| 10 | 5 9 | jca | |- ( ( x R y /\ x e. A ) -> ( y e. ( R " A ) /\ y `' R x ) ) |
| 11 | 10 | eximi | |- ( E. y ( x R y /\ x e. A ) -> E. y ( y e. ( R " A ) /\ y `' R x ) ) |
| 12 | 7 | eldm | |- ( x e. dom R <-> E. y x R y ) |
| 13 | 12 | anbi1i | |- ( ( x e. dom R /\ x e. A ) <-> ( E. y x R y /\ x e. A ) ) |
| 14 | elin | |- ( x e. ( dom R i^i A ) <-> ( x e. dom R /\ x e. A ) ) |
|
| 15 | 19.41v | |- ( E. y ( x R y /\ x e. A ) <-> ( E. y x R y /\ x e. A ) ) |
|
| 16 | 13 14 15 | 3bitr4i | |- ( x e. ( dom R i^i A ) <-> E. y ( x R y /\ x e. A ) ) |
| 17 | 7 | elima2 | |- ( x e. ( `' R " ( R " A ) ) <-> E. y ( y e. ( R " A ) /\ y `' R x ) ) |
| 18 | 11 16 17 | 3imtr4i | |- ( x e. ( dom R i^i A ) -> x e. ( `' R " ( R " A ) ) ) |
| 19 | 18 | ssriv | |- ( dom R i^i A ) C_ ( `' R " ( R " A ) ) |