This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1le | |- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( S.1 ` F ) <_ ( S.1 ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> F e. dom S.1 ) |
|
| 2 | 0ss | |- (/) C_ RR |
|
| 3 | 2 | a1i | |- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> (/) C_ RR ) |
| 4 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 5 | 4 | a1i | |- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( vol* ` (/) ) = 0 ) |
| 6 | simp2 | |- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> G e. dom S.1 ) |
|
| 7 | simpl | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) |
|
| 8 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 9 | ffn | |- ( F : RR --> RR -> F Fn RR ) |
|
| 10 | 7 8 9 | 3syl | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F Fn RR ) |
| 11 | simpr | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) |
|
| 12 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 13 | ffn | |- ( G : RR --> RR -> G Fn RR ) |
|
| 14 | 11 12 13 | 3syl | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G Fn RR ) |
| 15 | reex | |- RR e. _V |
|
| 16 | 15 | a1i | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> RR e. _V ) |
| 17 | inidm | |- ( RR i^i RR ) = RR |
|
| 18 | eqidd | |- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) |
|
| 19 | eqidd | |- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( G ` x ) = ( G ` x ) ) |
|
| 20 | 10 14 16 16 17 18 19 | ofrval | |- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ F oR <_ G /\ x e. RR ) -> ( F ` x ) <_ ( G ` x ) ) |
| 21 | 20 | 3exp | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oR <_ G -> ( x e. RR -> ( F ` x ) <_ ( G ` x ) ) ) ) |
| 22 | 21 | 3impia | |- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( x e. RR -> ( F ` x ) <_ ( G ` x ) ) ) |
| 23 | eldifi | |- ( x e. ( RR \ (/) ) -> x e. RR ) |
|
| 24 | 22 23 | impel | |- ( ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) /\ x e. ( RR \ (/) ) ) -> ( F ` x ) <_ ( G ` x ) ) |
| 25 | 1 3 5 6 24 | itg1lea | |- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( S.1 ` F ) <_ ( S.1 ` G ) ) |