This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absexpz | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 2 | absexp | |- ( ( A e. CC /\ N e. NN0 ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |
|
| 3 | 2 | ex | |- ( A e. CC -> ( N e. NN0 -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) ) |
| 4 | 3 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( N e. NN0 -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) ) |
| 5 | 1cnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> 1 e. CC ) |
|
| 6 | simpll | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
|
| 7 | nnnn0 | |- ( -u N e. NN -> -u N e. NN0 ) |
|
| 8 | 7 | ad2antll | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 9 | 6 8 | expcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) e. CC ) |
| 10 | simplr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
|
| 11 | nnz | |- ( -u N e. NN -> -u N e. ZZ ) |
|
| 12 | 11 | ad2antll | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 13 | 6 10 12 | expne0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) =/= 0 ) |
| 14 | absdiv | |- ( ( 1 e. CC /\ ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) -> ( abs ` ( 1 / ( A ^ -u N ) ) ) = ( ( abs ` 1 ) / ( abs ` ( A ^ -u N ) ) ) ) |
|
| 15 | 5 9 13 14 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` ( 1 / ( A ^ -u N ) ) ) = ( ( abs ` 1 ) / ( abs ` ( A ^ -u N ) ) ) ) |
| 16 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 17 | 16 | oveq1i | |- ( ( abs ` 1 ) / ( abs ` ( A ^ -u N ) ) ) = ( 1 / ( abs ` ( A ^ -u N ) ) ) |
| 18 | absexp | |- ( ( A e. CC /\ -u N e. NN0 ) -> ( abs ` ( A ^ -u N ) ) = ( ( abs ` A ) ^ -u N ) ) |
|
| 19 | 6 8 18 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` ( A ^ -u N ) ) = ( ( abs ` A ) ^ -u N ) ) |
| 20 | 19 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( abs ` ( A ^ -u N ) ) ) = ( 1 / ( ( abs ` A ) ^ -u N ) ) ) |
| 21 | 17 20 | eqtrid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( abs ` 1 ) / ( abs ` ( A ^ -u N ) ) ) = ( 1 / ( ( abs ` A ) ^ -u N ) ) ) |
| 22 | 15 21 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` ( 1 / ( A ^ -u N ) ) ) = ( 1 / ( ( abs ` A ) ^ -u N ) ) ) |
| 23 | simprl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
|
| 24 | 23 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 25 | expneg2 | |- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
|
| 26 | 6 24 8 25 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 27 | 26 | fveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` ( A ^ N ) ) = ( abs ` ( 1 / ( A ^ -u N ) ) ) ) |
| 28 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 29 | 28 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` A ) e. RR ) |
| 30 | 29 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` A ) e. CC ) |
| 31 | expneg2 | |- ( ( ( abs ` A ) e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( ( abs ` A ) ^ N ) = ( 1 / ( ( abs ` A ) ^ -u N ) ) ) |
|
| 32 | 30 24 8 31 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( abs ` A ) ^ N ) = ( 1 / ( ( abs ` A ) ^ -u N ) ) ) |
| 33 | 22 27 32 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |
| 34 | 33 | ex | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( N e. RR /\ -u N e. NN ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) ) |
| 35 | 4 34 | jaod | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) ) |
| 36 | 35 | 3impia | |- ( ( A e. CC /\ A =/= 0 /\ ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |
| 37 | 1 36 | syl3an3b | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |