This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of the inner product value ipval . (Contributed by NM, 31-Jan-2007) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| dipfval.2 | |- G = ( +v ` U ) |
||
| dipfval.4 | |- S = ( .sOLD ` U ) |
||
| dipfval.6 | |- N = ( normCV ` U ) |
||
| dipfval.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipval2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipfval.2 | |- G = ( +v ` U ) |
|
| 3 | dipfval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | dipfval.6 | |- N = ( normCV ` U ) |
|
| 5 | dipfval.7 | |- P = ( .iOLD ` U ) |
|
| 6 | 1 2 3 4 5 | ipval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 7 | ax-icn | |- _i e. CC |
|
| 8 | 1 2 3 4 5 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ _i e. CC ) -> ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC ) |
| 9 | 7 8 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC ) |
| 10 | mulcl | |- ( ( _i e. CC /\ ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) e. CC ) |
|
| 11 | 7 9 10 | sylancr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 12 | neg1cn | |- -u 1 e. CC |
|
| 13 | 1 2 3 4 5 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u 1 e. CC ) -> ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) e. CC ) |
| 14 | 12 13 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) e. CC ) |
| 15 | 11 14 | subcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) e. CC ) |
| 16 | negicn | |- -u _i e. CC |
|
| 17 | 1 2 3 4 5 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u _i e. CC ) -> ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) |
| 18 | 16 17 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) |
| 19 | mulcl | |- ( ( _i e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) |
|
| 20 | 7 18 19 | sylancr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 21 | 15 20 | negsubd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 22 | 14 | mulm1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = -u ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
| 23 | 22 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + -u ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 24 | 11 14 | negsubd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + -u ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 25 | 23 24 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 26 | mulneg1 | |- ( ( _i e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) = -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
|
| 27 | 7 18 26 | sylancr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) = -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
| 28 | 25 27 | oveq12d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 29 | subdi | |- ( ( _i e. CC /\ ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
|
| 30 | 7 29 | mp3an1 | |- ( ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 31 | 9 18 30 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 32 | 31 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 33 | 11 20 14 | sub32d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 34 | 32 33 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 35 | 21 28 34 | 3eqtr4d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 36 | 1 3 | nvsid | |- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
| 37 | 36 | oveq2d | |- ( ( U e. NrmCVec /\ B e. X ) -> ( A G ( 1 S B ) ) = ( A G B ) ) |
| 38 | 37 | fveq2d | |- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( A G ( 1 S B ) ) ) = ( N ` ( A G B ) ) ) |
| 39 | 38 | oveq1d | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 40 | 39 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 41 | 40 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) = ( 1 x. ( ( N ` ( A G B ) ) ^ 2 ) ) ) |
| 42 | 1 2 3 4 5 | ipval2lem3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. RR ) |
| 43 | 42 | recnd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. CC ) |
| 44 | 43 | mullidd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( ( N ` ( A G B ) ) ^ 2 ) ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 45 | 41 44 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 46 | 35 45 | oveq12d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( ( N ` ( A G B ) ) ^ 2 ) ) ) |
| 47 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 48 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 49 | oveq2 | |- ( k = 4 -> ( _i ^ k ) = ( _i ^ 4 ) ) |
|
| 50 | i4 | |- ( _i ^ 4 ) = 1 |
|
| 51 | 49 50 | eqtrdi | |- ( k = 4 -> ( _i ^ k ) = 1 ) |
| 52 | 51 | oveq1d | |- ( k = 4 -> ( ( _i ^ k ) S B ) = ( 1 S B ) ) |
| 53 | 52 | oveq2d | |- ( k = 4 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( 1 S B ) ) ) |
| 54 | 53 | fveq2d | |- ( k = 4 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( 1 S B ) ) ) ) |
| 55 | 54 | oveq1d | |- ( k = 4 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) |
| 56 | 51 55 | oveq12d | |- ( k = 4 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) |
| 57 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 58 | expcl | |- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
|
| 59 | 7 57 58 | sylancr | |- ( k e. NN -> ( _i ^ k ) e. CC ) |
| 60 | 59 | adantl | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. NN ) -> ( _i ^ k ) e. CC ) |
| 61 | 1 2 3 4 5 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ ( _i ^ k ) e. CC ) -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) e. CC ) |
| 62 | 59 61 | sylan2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. NN ) -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) e. CC ) |
| 63 | 60 62 | mulcld | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. NN ) -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) e. CC ) |
| 64 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 65 | oveq2 | |- ( k = 3 -> ( _i ^ k ) = ( _i ^ 3 ) ) |
|
| 66 | i3 | |- ( _i ^ 3 ) = -u _i |
|
| 67 | 65 66 | eqtrdi | |- ( k = 3 -> ( _i ^ k ) = -u _i ) |
| 68 | 67 | oveq1d | |- ( k = 3 -> ( ( _i ^ k ) S B ) = ( -u _i S B ) ) |
| 69 | 68 | oveq2d | |- ( k = 3 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( -u _i S B ) ) ) |
| 70 | 69 | fveq2d | |- ( k = 3 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( -u _i S B ) ) ) ) |
| 71 | 70 | oveq1d | |- ( k = 3 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) |
| 72 | 67 71 | oveq12d | |- ( k = 3 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
| 73 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 74 | oveq2 | |- ( k = 2 -> ( _i ^ k ) = ( _i ^ 2 ) ) |
|
| 75 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 76 | 74 75 | eqtrdi | |- ( k = 2 -> ( _i ^ k ) = -u 1 ) |
| 77 | 76 | oveq1d | |- ( k = 2 -> ( ( _i ^ k ) S B ) = ( -u 1 S B ) ) |
| 78 | 77 | oveq2d | |- ( k = 2 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( -u 1 S B ) ) ) |
| 79 | 78 | fveq2d | |- ( k = 2 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
| 80 | 79 | oveq1d | |- ( k = 2 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
| 81 | 76 80 | oveq12d | |- ( k = 2 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 82 | 1z | |- 1 e. ZZ |
|
| 83 | oveq2 | |- ( k = 1 -> ( _i ^ k ) = ( _i ^ 1 ) ) |
|
| 84 | exp1 | |- ( _i e. CC -> ( _i ^ 1 ) = _i ) |
|
| 85 | 7 84 | ax-mp | |- ( _i ^ 1 ) = _i |
| 86 | 83 85 | eqtrdi | |- ( k = 1 -> ( _i ^ k ) = _i ) |
| 87 | 86 | oveq1d | |- ( k = 1 -> ( ( _i ^ k ) S B ) = ( _i S B ) ) |
| 88 | 87 | oveq2d | |- ( k = 1 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( _i S B ) ) ) |
| 89 | 88 | fveq2d | |- ( k = 1 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( _i S B ) ) ) ) |
| 90 | 89 | oveq1d | |- ( k = 1 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) |
| 91 | 86 90 | oveq12d | |- ( k = 1 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) |
| 92 | 91 | fsum1 | |- ( ( 1 e. ZZ /\ ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) e. CC ) -> sum_ k e. ( 1 ... 1 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) |
| 93 | 82 11 92 | sylancr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 1 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) |
| 94 | 1nn | |- 1 e. NN |
|
| 95 | 93 94 | jctil | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 e. NN /\ sum_ k e. ( 1 ... 1 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) ) |
| 96 | eqidd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) |
|
| 97 | 47 73 81 63 95 96 | fsump1i | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 2 e. NN /\ sum_ k e. ( 1 ... 2 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) ) |
| 98 | eqidd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
|
| 99 | 47 64 72 63 97 98 | fsump1i | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 3 e. NN /\ sum_ k e. ( 1 ... 3 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| 100 | eqidd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) = ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) ) |
|
| 101 | 47 48 56 63 99 100 | fsump1i | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 4 e. NN /\ sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) ) ) |
| 102 | 101 | simprd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) ) |
| 103 | 43 14 | subcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) e. CC ) |
| 104 | 9 18 | subcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 105 | mulcl | |- ( ( _i e. CC /\ ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) e. CC ) |
|
| 106 | 7 104 105 | sylancr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) e. CC ) |
| 107 | 103 106 | addcomd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) = ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) |
| 108 | 106 14 43 | subadd23d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( ( N ` ( A G B ) ) ^ 2 ) ) = ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) |
| 109 | 107 108 | eqtr4d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) = ( ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( ( N ` ( A G B ) ) ^ 2 ) ) ) |
| 110 | 46 102 109 | 3eqtr4d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| 111 | 110 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 112 | 6 111 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |