This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| dipfval.2 | |- G = ( +v ` U ) |
||
| dipfval.4 | |- S = ( .sOLD ` U ) |
||
| dipfval.6 | |- N = ( normCV ` U ) |
||
| dipfval.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipval2lem3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipfval.2 | |- G = ( +v ` U ) |
|
| 3 | dipfval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | dipfval.6 | |- N = ( normCV ` U ) |
|
| 5 | dipfval.7 | |- P = ( .iOLD ` U ) |
|
| 6 | 1 3 | nvsid | |- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
| 7 | 6 | oveq2d | |- ( ( U e. NrmCVec /\ B e. X ) -> ( A G ( 1 S B ) ) = ( A G B ) ) |
| 8 | 7 | fveq2d | |- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( A G ( 1 S B ) ) ) = ( N ` ( A G B ) ) ) |
| 9 | 8 | oveq1d | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 10 | 9 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 11 | ax-1cn | |- 1 e. CC |
|
| 12 | 1 2 3 4 5 | ipval2lem2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ 1 e. CC ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) e. RR ) |
| 13 | 11 12 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) e. RR ) |
| 14 | 10 13 | eqeltrrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. RR ) |