This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Four times the inner product value ipval3 , useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| dipfval.2 | |- G = ( +v ` U ) |
||
| dipfval.4 | |- S = ( .sOLD ` U ) |
||
| dipfval.6 | |- N = ( normCV ` U ) |
||
| dipfval.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | 4ipval2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 4 x. ( A P B ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipfval.2 | |- G = ( +v ` U ) |
|
| 3 | dipfval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | dipfval.6 | |- N = ( normCV ` U ) |
|
| 5 | dipfval.7 | |- P = ( .iOLD ` U ) |
|
| 6 | 1 2 3 4 5 | ipval2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 7 | 6 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 4 x. ( A P B ) ) = ( 4 x. ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) ) |
| 8 | simp1 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) |
|
| 9 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 10 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ ( A G B ) e. X ) -> ( N ` ( A G B ) ) e. RR ) |
| 11 | 8 9 10 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) e. RR ) |
| 12 | 11 | recnd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) e. CC ) |
| 13 | 12 | sqcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. CC ) |
| 14 | neg1cn | |- -u 1 e. CC |
|
| 15 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 S B ) e. X ) |
| 16 | 14 15 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 S B ) e. X ) |
| 17 | 16 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S B ) e. X ) |
| 18 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 S B ) e. X ) -> ( A G ( -u 1 S B ) ) e. X ) |
| 19 | 17 18 | syld3an3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( -u 1 S B ) ) e. X ) |
| 20 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ ( A G ( -u 1 S B ) ) e. X ) -> ( N ` ( A G ( -u 1 S B ) ) ) e. RR ) |
| 21 | 8 19 20 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( -u 1 S B ) ) ) e. RR ) |
| 22 | 21 | recnd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( -u 1 S B ) ) ) e. CC ) |
| 23 | 22 | sqcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) e. CC ) |
| 24 | 13 23 | subcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) e. CC ) |
| 25 | ax-icn | |- _i e. CC |
|
| 26 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ _i e. CC /\ B e. X ) -> ( _i S B ) e. X ) |
| 27 | 25 26 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( _i S B ) e. X ) |
| 28 | 27 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i S B ) e. X ) |
| 29 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ ( _i S B ) e. X ) -> ( A G ( _i S B ) ) e. X ) |
| 30 | 28 29 | syld3an3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( _i S B ) ) e. X ) |
| 31 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) |
| 32 | 8 30 31 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) |
| 33 | 32 | recnd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. CC ) |
| 34 | 33 | sqcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC ) |
| 35 | negicn | |- -u _i e. CC |
|
| 36 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u _i e. CC /\ B e. X ) -> ( -u _i S B ) e. X ) |
| 37 | 35 36 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( -u _i S B ) e. X ) |
| 38 | 37 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S B ) e. X ) |
| 39 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ ( -u _i S B ) e. X ) -> ( A G ( -u _i S B ) ) e. X ) |
| 40 | 38 39 | syld3an3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( -u _i S B ) ) e. X ) |
| 41 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ ( A G ( -u _i S B ) ) e. X ) -> ( N ` ( A G ( -u _i S B ) ) ) e. RR ) |
| 42 | 8 40 41 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( -u _i S B ) ) ) e. RR ) |
| 43 | 42 | recnd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( -u _i S B ) ) ) e. CC ) |
| 44 | 43 | sqcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) |
| 45 | 34 44 | subcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 46 | mulcl | |- ( ( _i e. CC /\ ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) e. CC ) |
|
| 47 | 25 45 46 | sylancr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) e. CC ) |
| 48 | 24 47 | addcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) e. CC ) |
| 49 | 4cn | |- 4 e. CC |
|
| 50 | 4ne0 | |- 4 =/= 0 |
|
| 51 | divcan2 | |- ( ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) e. CC /\ 4 e. CC /\ 4 =/= 0 ) -> ( 4 x. ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
|
| 52 | 49 50 51 | mp3an23 | |- ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) e. CC -> ( 4 x. ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| 53 | 48 52 | syl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 4 x. ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| 54 | 7 53 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 4 x. ( A P B ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |