This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is G , the scalar product is S , the norm is N , and the set of vectors is X . Equation 6.45 of Ponnusamy p. 361. (Contributed by NM, 31-Jan-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| dipfval.2 | |- G = ( +v ` U ) |
||
| dipfval.4 | |- S = ( .sOLD ` U ) |
||
| dipfval.6 | |- N = ( normCV ` U ) |
||
| dipfval.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipfval.2 | |- G = ( +v ` U ) |
|
| 3 | dipfval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | dipfval.6 | |- N = ( normCV ` U ) |
|
| 5 | dipfval.7 | |- P = ( .iOLD ` U ) |
|
| 6 | 1 2 3 4 5 | dipfval | |- ( U e. NrmCVec -> P = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| 7 | 6 | oveqd | |- ( U e. NrmCVec -> ( A P B ) = ( A ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) B ) ) |
| 8 | fvoveq1 | |- ( x = A -> ( N ` ( x G ( ( _i ^ k ) S y ) ) ) = ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ) |
|
| 9 | 8 | oveq1d | |- ( x = A -> ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) |
| 10 | 9 | oveq2d | |- ( x = A -> ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
| 11 | 10 | sumeq2sdv | |- ( x = A -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
| 12 | 11 | oveq1d | |- ( x = A -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) |
| 13 | oveq2 | |- ( y = B -> ( ( _i ^ k ) S y ) = ( ( _i ^ k ) S B ) ) |
|
| 14 | 13 | oveq2d | |- ( y = B -> ( A G ( ( _i ^ k ) S y ) ) = ( A G ( ( _i ^ k ) S B ) ) ) |
| 15 | 14 | fveq2d | |- ( y = B -> ( N ` ( A G ( ( _i ^ k ) S y ) ) ) = ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ) |
| 16 | 15 | oveq1d | |- ( y = B -> ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) |
| 17 | 16 | oveq2d | |- ( y = B -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) ) |
| 18 | 17 | sumeq2sdv | |- ( y = B -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) ) |
| 19 | 18 | oveq1d | |- ( y = B -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 20 | eqid | |- ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) |
|
| 21 | ovex | |- ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) e. _V |
|
| 22 | 12 19 20 21 | ovmpo | |- ( ( A e. X /\ B e. X ) -> ( A ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 23 | 7 22 | sylan9eq | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 24 | 23 | 3impb | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |