This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _i to the fourth power. (Contributed by NM, 31-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i4 | |- ( _i ^ 4 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | 2nn0 | |- 2 e. NN0 |
|
| 3 | expadd | |- ( ( _i e. CC /\ 2 e. NN0 /\ 2 e. NN0 ) -> ( _i ^ ( 2 + 2 ) ) = ( ( _i ^ 2 ) x. ( _i ^ 2 ) ) ) |
|
| 4 | 1 2 2 3 | mp3an | |- ( _i ^ ( 2 + 2 ) ) = ( ( _i ^ 2 ) x. ( _i ^ 2 ) ) |
| 5 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
| 6 | 5 | oveq2i | |- ( _i ^ ( 2 + 2 ) ) = ( _i ^ 4 ) |
| 7 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 8 | 7 7 | oveq12i | |- ( ( _i ^ 2 ) x. ( _i ^ 2 ) ) = ( -u 1 x. -u 1 ) |
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | 9 9 | mul2negi | |- ( -u 1 x. -u 1 ) = ( 1 x. 1 ) |
| 11 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 12 | 8 10 11 | 3eqtri | |- ( ( _i ^ 2 ) x. ( _i ^ 2 ) ) = 1 |
| 13 | 4 6 12 | 3eqtr3i | |- ( _i ^ 4 ) = 1 |