This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Optimized version of fsump1 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsump1i.1 | |- Z = ( ZZ>= ` M ) |
|
| fsump1i.2 | |- N = ( K + 1 ) |
||
| fsump1i.3 | |- ( k = N -> A = B ) |
||
| fsump1i.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| fsump1i.5 | |- ( ph -> ( K e. Z /\ sum_ k e. ( M ... K ) A = S ) ) |
||
| fsump1i.6 | |- ( ph -> ( S + B ) = T ) |
||
| Assertion | fsump1i | |- ( ph -> ( N e. Z /\ sum_ k e. ( M ... N ) A = T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsump1i.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | fsump1i.2 | |- N = ( K + 1 ) |
|
| 3 | fsump1i.3 | |- ( k = N -> A = B ) |
|
| 4 | fsump1i.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 5 | fsump1i.5 | |- ( ph -> ( K e. Z /\ sum_ k e. ( M ... K ) A = S ) ) |
|
| 6 | fsump1i.6 | |- ( ph -> ( S + B ) = T ) |
|
| 7 | 5 | simpld | |- ( ph -> K e. Z ) |
| 8 | 7 1 | eleqtrdi | |- ( ph -> K e. ( ZZ>= ` M ) ) |
| 9 | peano2uz | |- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
|
| 10 | 9 1 | eleqtrrdi | |- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. Z ) |
| 11 | 8 10 | syl | |- ( ph -> ( K + 1 ) e. Z ) |
| 12 | 2 11 | eqeltrid | |- ( ph -> N e. Z ) |
| 13 | 2 | oveq2i | |- ( M ... N ) = ( M ... ( K + 1 ) ) |
| 14 | 13 | sumeq1i | |- sum_ k e. ( M ... N ) A = sum_ k e. ( M ... ( K + 1 ) ) A |
| 15 | elfzuz | |- ( k e. ( M ... ( K + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 16 | 15 1 | eleqtrrdi | |- ( k e. ( M ... ( K + 1 ) ) -> k e. Z ) |
| 17 | 16 4 | sylan2 | |- ( ( ph /\ k e. ( M ... ( K + 1 ) ) ) -> A e. CC ) |
| 18 | 2 | eqeq2i | |- ( k = N <-> k = ( K + 1 ) ) |
| 19 | 18 3 | sylbir | |- ( k = ( K + 1 ) -> A = B ) |
| 20 | 8 17 19 | fsump1 | |- ( ph -> sum_ k e. ( M ... ( K + 1 ) ) A = ( sum_ k e. ( M ... K ) A + B ) ) |
| 21 | 14 20 | eqtrid | |- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... K ) A + B ) ) |
| 22 | 5 | simprd | |- ( ph -> sum_ k e. ( M ... K ) A = S ) |
| 23 | 22 | oveq1d | |- ( ph -> ( sum_ k e. ( M ... K ) A + B ) = ( S + B ) ) |
| 24 | 21 23 6 | 3eqtrd | |- ( ph -> sum_ k e. ( M ... N ) A = T ) |
| 25 | 12 24 | jca | |- ( ph -> ( N e. Z /\ sum_ k e. ( M ... N ) A = T ) ) |