This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnnvs.6 | |- U = <. <. + , x. >. , abs >. |
|
| Assertion | cnnvs | |- x. = ( .sOLD ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnvs.6 | |- U = <. <. + , x. >. , abs >. |
|
| 2 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 3 | 2 | smfval | |- ( .sOLD ` U ) = ( 2nd ` ( 1st ` U ) ) |
| 4 | 1 | fveq2i | |- ( 1st ` U ) = ( 1st ` <. <. + , x. >. , abs >. ) |
| 5 | opex | |- <. + , x. >. e. _V |
|
| 6 | absf | |- abs : CC --> RR |
|
| 7 | cnex | |- CC e. _V |
|
| 8 | fex | |- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
|
| 9 | 6 7 8 | mp2an | |- abs e. _V |
| 10 | 5 9 | op1st | |- ( 1st ` <. <. + , x. >. , abs >. ) = <. + , x. >. |
| 11 | 4 10 | eqtri | |- ( 1st ` U ) = <. + , x. >. |
| 12 | 11 | fveq2i | |- ( 2nd ` ( 1st ` U ) ) = ( 2nd ` <. + , x. >. ) |
| 13 | addex | |- + e. _V |
|
| 14 | mulex | |- x. e. _V |
|
| 15 | 13 14 | op2nd | |- ( 2nd ` <. + , x. >. ) = x. |
| 16 | 3 12 15 | 3eqtrri | |- x. = ( .sOLD ` U ) |