This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a normed complex vector space. The vector operation is + , the scalar product is x. , and the norm function is abs . (Contributed by Steve Rodriguez, 3-Dec-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnnv.6 | |- U = <. <. + , x. >. , abs >. |
|
| Assertion | cnnv | |- U e. NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnv.6 | |- U = <. <. + , x. >. , abs >. |
|
| 2 | cnaddabloOLD | |- + e. AbelOp |
|
| 3 | ablogrpo | |- ( + e. AbelOp -> + e. GrpOp ) |
|
| 4 | 2 3 | ax-mp | |- + e. GrpOp |
| 5 | ax-addf | |- + : ( CC X. CC ) --> CC |
|
| 6 | 5 | fdmi | |- dom + = ( CC X. CC ) |
| 7 | 4 6 | grporn | |- CC = ran + |
| 8 | cnidOLD | |- 0 = ( GId ` + ) |
|
| 9 | cncvcOLD | |- <. + , x. >. e. CVecOLD |
|
| 10 | absf | |- abs : CC --> RR |
|
| 11 | abs00 | |- ( x e. CC -> ( ( abs ` x ) = 0 <-> x = 0 ) ) |
|
| 12 | 11 | biimpa | |- ( ( x e. CC /\ ( abs ` x ) = 0 ) -> x = 0 ) |
| 13 | absmul | |- ( ( y e. CC /\ x e. CC ) -> ( abs ` ( y x. x ) ) = ( ( abs ` y ) x. ( abs ` x ) ) ) |
|
| 14 | abstri | |- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) |
|
| 15 | 7 8 9 10 12 13 14 1 | isnvi | |- U e. NrmCVec |