This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip2eqi.1 | |- X = ( BaseSet ` U ) |
|
| ip2eqi.7 | |- P = ( .iOLD ` U ) |
||
| ip2eqi.u | |- U e. CPreHilOLD |
||
| Assertion | ip2eqi | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2eqi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip2eqi.7 | |- P = ( .iOLD ` U ) |
|
| 3 | ip2eqi.u | |- U e. CPreHilOLD |
|
| 4 | 3 | phnvi | |- U e. NrmCVec |
| 5 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 6 | 1 5 | nvmcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) e. X ) |
| 7 | 4 6 | mp3an1 | |- ( ( A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) e. X ) |
| 8 | oveq1 | |- ( x = ( A ( -v ` U ) B ) -> ( x P A ) = ( ( A ( -v ` U ) B ) P A ) ) |
|
| 9 | oveq1 | |- ( x = ( A ( -v ` U ) B ) -> ( x P B ) = ( ( A ( -v ` U ) B ) P B ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( x = ( A ( -v ` U ) B ) -> ( ( x P A ) = ( x P B ) <-> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 11 | 10 | rspcv | |- ( ( A ( -v ` U ) B ) e. X -> ( A. x e. X ( x P A ) = ( x P B ) -> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 12 | 7 11 | syl | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) -> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 13 | simpl | |- ( ( A e. X /\ B e. X ) -> A e. X ) |
|
| 14 | simpr | |- ( ( A e. X /\ B e. X ) -> B e. X ) |
|
| 15 | 1 5 2 | dipsubdi | |- ( ( U e. CPreHilOLD /\ ( ( A ( -v ` U ) B ) e. X /\ A e. X /\ B e. X ) ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) |
| 16 | 3 15 | mpan | |- ( ( ( A ( -v ` U ) B ) e. X /\ A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) |
| 17 | 7 13 14 16 | syl3anc | |- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) |
| 18 | 17 | eqeq1d | |- ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 ) ) |
| 19 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 20 | 1 19 2 | ipz | |- ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 21 | 4 20 | mpan | |- ( ( A ( -v ` U ) B ) e. X -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 22 | 7 21 | syl | |- ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 23 | 18 22 | bitr3d | |- ( ( A e. X /\ B e. X ) -> ( ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 24 | 1 2 | dipcl | |- ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X /\ A e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) |
| 25 | 4 24 | mp3an1 | |- ( ( ( A ( -v ` U ) B ) e. X /\ A e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) |
| 26 | 7 13 25 | syl2anc | |- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) |
| 27 | 1 2 | dipcl | |- ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) |
| 28 | 4 27 | mp3an1 | |- ( ( ( A ( -v ` U ) B ) e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) |
| 29 | 7 28 | sylancom | |- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) |
| 30 | 26 29 | subeq0ad | |- ( ( A e. X /\ B e. X ) -> ( ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 <-> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 31 | 1 5 19 | nvmeq0 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) = ( 0vec ` U ) <-> A = B ) ) |
| 32 | 4 31 | mp3an1 | |- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) = ( 0vec ` U ) <-> A = B ) ) |
| 33 | 23 30 32 | 3bitr3d | |- ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) <-> A = B ) ) |
| 34 | 12 33 | sylibd | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) -> A = B ) ) |
| 35 | oveq2 | |- ( A = B -> ( x P A ) = ( x P B ) ) |
|
| 36 | 35 | ralrimivw | |- ( A = B -> A. x e. X ( x P A ) = ( x P B ) ) |
| 37 | 34 36 | impbid1 | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) <-> A = B ) ) |