This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product. Equation I3 of Ponnusamy p. 362. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipdir.1 | |- X = ( BaseSet ` U ) |
|
| dipdir.2 | |- G = ( +v ` U ) |
||
| dipdir.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipdir | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) P C ) = ( ( A P C ) + ( B P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipdir.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipdir.2 | |- G = ( +v ` U ) |
|
| 3 | dipdir.7 | |- P = ( .iOLD ` U ) |
|
| 4 | fveq2 | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( BaseSet ` U ) = ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 5 | 1 4 | eqtrid | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> X = ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 6 | 5 | eleq2d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( A e. X <-> A e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 7 | 5 | eleq2d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( B e. X <-> B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 8 | 5 | eleq2d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( C e. X <-> C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 9 | 6 7 8 | 3anbi123d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) ) |
| 10 | fveq2 | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( +v ` U ) = ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 11 | 2 10 | eqtrid | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> G = ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 12 | 11 | oveqd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( A G B ) = ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ) |
| 13 | 12 | oveq1d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A G B ) P C ) = ( ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) P C ) ) |
| 14 | fveq2 | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( .iOLD ` U ) = ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 15 | 3 14 | eqtrid | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> P = ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 16 | 15 | oveqd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) P C ) = ( ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) |
| 17 | 13 16 | eqtrd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A G B ) P C ) = ( ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) |
| 18 | 15 | oveqd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( A P C ) = ( A ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) |
| 19 | 15 | oveqd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( B P C ) = ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) |
| 20 | 18 19 | oveq12d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A P C ) + ( B P C ) ) = ( ( A ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) + ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) |
| 21 | 17 20 | eqeq12d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( ( A G B ) P C ) = ( ( A P C ) + ( B P C ) ) <-> ( ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) = ( ( A ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) + ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) ) |
| 22 | 9 21 | imbi12d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( ( A e. X /\ B e. X /\ C e. X ) -> ( ( A G B ) P C ) = ( ( A P C ) + ( B P C ) ) ) <-> ( ( A e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) -> ( ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) = ( ( A ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) + ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) ) ) |
| 23 | eqid | |- ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 24 | eqid | |- ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 25 | eqid | |- ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 26 | eqid | |- ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 27 | elimphu | |- if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) e. CPreHilOLD |
|
| 28 | 23 24 25 26 27 | ipdiri | |- ( ( A e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) -> ( ( A ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) = ( ( A ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) + ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) |
| 29 | 22 28 | dedth | |- ( U e. CPreHilOLD -> ( ( A e. X /\ B e. X /\ C e. X ) -> ( ( A G B ) P C ) = ( ( A P C ) + ( B P C ) ) ) ) |
| 30 | 29 | imp | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) P C ) = ( ( A P C ) + ( B P C ) ) ) |